Skip to content

Commit

Permalink
update install doc
Browse files Browse the repository at this point in the history
  • Loading branch information
cyrildiagne committed Jan 11, 2020
1 parent 9643e01 commit 35a46a2
Showing 1 changed file with 11 additions and 24 deletions.
35 changes: 11 additions & 24 deletions docs/install_cli.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,17 +10,20 @@ curl https://raw.githubusercontent.com/cyrildiagne/kuda/master/scripts/get-cli.s

The CLI must be initialized with a remote Kuda cluster configuration.

<!-- ## Using gpu.sh
<!--
## Using gpu.sh
The best way to get started quickly on a cost-effective, fully managed cluster.
First create an account on gpu.sh then initialize your local configuration with your namespace.
```bash
kuda init \
-n $your_namespace \
gpu.sh
kuda init <your_namespace>
```
Replace `$your_namespace` with your [gpu.sh](#) username. -->
Replace <your_namespace> with your [gpu.sh](#) username.
-->


## Using [GCP](#)

Expand All @@ -30,24 +33,8 @@ GCP provides a good environment for running Kuda.
Follow the installation guide for
[installing Kuda on GCP](/docs/install_on_gcp.md).

Then configure the CLI to deploy to the GKE cluster directly from your
workstation using the `skaffold` deployer.
This deployer requires [Docker](docker.com) and [Skaffold](https://skaffold.dev)
installed and configured on your machine.
Then initialize your local configuration with your namespace.

```bash
kuda init \
-n $your_namespace \
-d gcr.io/$your_gcp_project \
skaffold
```

<!-- ```bash
If you've installed and configured a [Kuda Deployer](#):
kuda init \
-n $your_namespace \
$your_domain
```
-->

kuda init -n <your_namespace> -p <your_domain>
```

0 comments on commit 35a46a2

Please sign in to comment.