Skip to content

Repository for "Multi-step Pick-and-Place Tasks Using Object-centric Dense Correspondences" (IROS 2019)

License

Notifications You must be signed in to change notification settings

cychai1995/mcdons

Repository files navigation

Multi-class Dense Object Nets

Code for our paper "Multi-step Pick-and-Place Tasks Using Object-centric Dense Correspondences" (IROS 2019)

Training Environment

  • OS: Ubuntu 18.04 with Python Version=3.6

  • Device and Packages: using single GTX-1080Ti / RTX-2080Ti with CUDA 10.1 and

torch==1.1.0
opencv-python==4.10.0.*
torchvision==0.2.2*
git clone https://github.com/NVIDIA/apex
git checkout 8818ba9
python setup.py install --cuda_ext --cpp_ext

Please make sure the correct installation of pytorch(1.1.0) and apex, otherwise the memory usage may excess 11GB.

Data Download

Pretrained Feature-pyramid networks on PascalVOC 2007

Pascal VOC 2012 Images for background randomization

Our Dataset

Modifications for the configuration files

Modify the following lines in the configuration file you are going to run, e.g., configs/mcdon.yaml

FPN_pretrained: 'YOUR_PATH_FPN50/fpn50.weight'
texture_base: 'YOUR_PATH_VOC2012/VOCdevkit/VOC2012'
progress_path: 'YOUR_PATH_CHECKPOINT/progress' 
result_path: 'YOUR_PATH_CHECKPOINT/result'
base_dir: 'YOUR_PATH_DATASET/DataMCD-net'
  • YOUR_PATH_FPN50: the path for finding the pretrained weight file fpn50.weight

  • YOUR_PATH_VOC2012: the path where you extract the downloaded VOCtrainval_11-May-2012.tar

  • YOUR_PATH_CHECKPOINT: any desired path for the checkpoints during training

  • YOUR_PATH_DATASET: the path where you extract our dataset file

Run the training

  • Train the DON Baseline on 7 classes of objects

    python trainer.py configs/baseline.yaml

  • Train our MCDON (MHSCT-12D M=5,N=2) on 7 classes of objects

    python trainer.py configs/mcdon.yaml

Run the visual evaluation(on novel objects) after training

python descriptor_evaluation configs/mcdon.yaml
  • Pass -tps N to manually specify the restoring N epoch, otherwise we use the tps value in the configuration file
  • In the evaluation window,
    • Adjust the proper threshold on the bar
    • Click on either side of the color images to find the matching region in the other side
    • Press s to sample new pairs for comparison, q to exit

Pretrained Weights

  • Pretrained weight file of our MCDON using the setting configs/mcdon.yaml

    • Download progress50.tpdata

    • Place the weight file in the path

      YOUR_PATH_CHECKPOINT/progress/mcdon/progress50.tpdata
      
    • Run the visual evaluation

      python descriptor_evaluation.py configs/mcdon.yaml -tps 50
      

About

Repository for "Multi-step Pick-and-Place Tasks Using Object-centric Dense Correspondences" (IROS 2019)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages