forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
The Agda standard library
License
crypto-agda/agda-stdlib
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
module README where ------------------------------------------------------------------------ -- The Agda standard library -- -- Author: Nils Anders Danielsson, with contributions from Andreas -- Abel, Stevan Andjelkovic, Jean-Philippe Bernardy, Peter Berry, -- Joachim Breitner, Samuel Bronson, Daniel Brown, Liang-Ting Chen, -- Dominique Devriese, Dan Doel, Érdi Gergő, Helmut Grohne, Simon -- Foster, Liyang Hu, Patrik Jansson, Alan Jeffrey, Eric Mertens, -- Darin Morrison, Guilhem Moulin, Shin-Cheng Mu, Ulf Norell, Noriyuki -- OHKAWA, Nicolas Pouillard, Andrés Sicard-Ramírez and Noam -- Zeilberger ------------------------------------------------------------------------ -- Note that the development version of the library often requires the -- latest development version of Agda. -- Note also that no guarantees are currently made about forwards or -- backwards compatibility, the library is still at an experimental -- stage. -- To make use of the library, add the path to the library’s root -- directory (src) to the Agda search path, either using the -- --include-path flag or by customising the Emacs mode variable -- agda2-include-dirs (M-x customize-group RET agda2 RET). -- To compile the library using the MAlonzo compiler you first need to -- install some supporting Haskell code, for instance as follows: -- -- cd ffi -- cabal install -- -- Currently the library does not support the Epic or JavaScript -- compiler backends. -- Contributions to this library are welcome (but to avoid wasted work -- it is suggested that you discuss large changes before implementing -- them). Please send contributions in the form of git pull requests, patch -- bundles or ask for commmit rights to the repository. It is appreciated if -- every patch contains a single, complete change, and if the coding style used -- in the library is adhered to. ------------------------------------------------------------------------ -- Module hierarchy ------------------------------------------------------------------------ -- The top-level module names of the library are currently allocated -- as follows: -- -- • Algebra -- Abstract algebra (monoids, groups, rings etc.), along with -- properties needed to specify these structures (associativity, -- commutativity, etc.), and operations on and proofs about the -- structures. -- • Category -- Category theory-inspired idioms used to structure functional -- programs (functors and monads, for instance). -- • Coinduction -- Support for coinduction. -- • Data -- Data types and properties about data types. -- • Function -- Combinators and properties related to functions. -- • Foreign -- Related to the foreign function interface. -- • Induction -- A general framework for induction (includes lexicographic and -- well-founded induction). -- • IO -- Input/output-related functions. -- • Irrelevance -- Definitions related to (proscriptive) irrelevance. -- • Level -- Universe levels. -- • Record -- An encoding of record types with manifest fields and "with". -- • Reflection -- Support for reflection. -- • Relation -- Properties of and proofs about relations (mostly homogeneous -- binary relations). -- • Size -- Sizes used by the sized types mechanism. -- • Universe -- A definition of universes. ------------------------------------------------------------------------ -- A selection of useful library modules ------------------------------------------------------------------------ -- Note that module names in source code are often hyperlinked to the -- corresponding module. In the Emacs mode you can follow these -- hyperlinks by typing M-. or clicking with the middle mouse button. -- • Some data types import Data.Bool -- Booleans. import Data.Char -- Characters. import Data.Empty -- The empty type. import Data.Fin -- Finite sets. import Data.List -- Lists. import Data.Maybe -- The maybe type. import Data.Nat -- Natural numbers. import Data.Product -- Products. import Data.Stream -- Streams. import Data.String -- Strings. import Data.Sum -- Disjoint sums. import Data.Unit -- The unit type. import Data.Vec -- Fixed-length vectors. -- • Some types used to structure computations import Category.Functor -- Functors. import Category.Applicative -- Applicative functors. import Category.Monad -- Monads. -- • Equality -- Propositional equality: import Relation.Binary.PropositionalEquality -- Convenient syntax for "equational reasoning" using a preorder: import Relation.Binary.PreorderReasoning -- Solver for commutative ring or semiring equalities: import Algebra.RingSolver -- • Properties of functions, sets and relations -- Monoids, rings and similar algebraic structures: import Algebra -- Negation, decidability, and similar operations on sets: import Relation.Nullary -- Properties of homogeneous binary relations: import Relation.Binary -- • Induction -- An abstraction of various forms of recursion/induction: import Induction -- Well-founded induction: import Induction.WellFounded -- Various forms of induction for natural numbers: import Induction.Nat -- • Support for coinduction import Coinduction -- • IO import IO ------------------------------------------------------------------------ -- Record hierarchies ------------------------------------------------------------------------ -- When an abstract hierarchy of some sort (for instance semigroup → -- monoid → group) is included in the library the basic approach is to -- specify the properties of every concept in terms of a record -- containing just properties, parameterised on the underlying -- operations, sets etc.: -- -- record IsSemigroup {A} (≈ : Rel A) (∙ : Op₂ A) : Set where -- open FunctionProperties ≈ -- field -- isEquivalence : IsEquivalence ≈ -- assoc : Associative ∙ -- ∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈ -- -- More specific concepts are then specified in terms of the simpler -- ones: -- -- record IsMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where -- open FunctionProperties ≈ -- field -- isSemigroup : IsSemigroup ≈ ∙ -- identity : Identity ε ∙ -- -- open IsSemigroup isSemigroup public -- -- Note here that open IsSemigroup isSemigroup public ensures that the -- fields of the isSemigroup record can be accessed directly; this -- technique enables the user of an IsMonoid record to use underlying -- records without having to manually open an entire record hierarchy. -- This is not always possible, though. Consider the following definition -- of preorders: -- -- record IsPreorder {A : Set} -- (_≈_ : Rel A) -- The underlying equality. -- (_∼_ : Rel A) -- The relation. -- : Set where -- field -- isEquivalence : IsEquivalence _≈_ -- -- Reflexivity is expressed in terms of an underlying equality: -- reflexive : _≈_ ⇒ _∼_ -- trans : Transitive _∼_ -- -- module Eq = IsEquivalence isEquivalence -- -- ... -- -- The Eq module in IsPreorder is not opened publicly, because it -- contains some fields which clash with fields or other definitions -- in IsPreorder. -- Records packing up properties with the corresponding operations, -- sets, etc. are sometimes also defined: -- -- record Semigroup : Set₁ where -- infixl 7 _∙_ -- infix 4 _≈_ -- field -- Carrier : Set -- _≈_ : Rel Carrier -- _∙_ : Op₂ Carrier -- isSemigroup : IsSemigroup _≈_ _∙_ -- -- open IsSemigroup isSemigroup public -- -- setoid : Setoid -- setoid = record { isEquivalence = isEquivalence } -- -- record Monoid : Set₁ where -- infixl 7 _∙_ -- infix 4 _≈_ -- field -- Carrier : Set -- _≈_ : Rel Carrier -- _∙_ : Op₂ Carrier -- ε : Carrier -- isMonoid : IsMonoid _≈_ _∙_ ε -- -- open IsMonoid isMonoid public -- -- semigroup : Semigroup -- semigroup = record { isSemigroup = isSemigroup } -- -- open Semigroup semigroup public using (setoid) -- -- Note that the Monoid record does not include a Semigroup field. -- Instead the Monoid /module/ includes a "repackaging function" -- semigroup which converts a Monoid to a Semigroup. -- The above setup may seem a bit complicated, but we think it makes the -- library quite easy to work with, while also providing enough -- flexibility. ------------------------------------------------------------------------ -- More documentation ------------------------------------------------------------------------ -- Some examples showing where the natural numbers/integers and some -- related operations and properties are defined, and how they can be -- used: import README.Nat import README.Integer -- Some examples showing how the AVL tree module can be used. import README.AVL -- An example showing how the Record module can be used. import README.Record -- An example showing how the case expression can be used. import README.Case ------------------------------------------------------------------------ -- Core modules ------------------------------------------------------------------------ -- Some modules have names ending in ".Core". These modules are -- internal, and have (mostly) been created to avoid mutual recursion -- between modules. They should not be imported directly; their -- contents are reexported by other modules. ------------------------------------------------------------------------ -- All library modules ------------------------------------------------------------------------ -- For short descriptions of every library module, see Everything: import Everything -- Note that the Everything module is generated automatically. If you -- have downloaded the library from its darcs repository and want to -- type check README then you can (try to) construct Everything by -- running "cabal install && GenerateEverything". -- Note that all library sources are located under src or ffi. The -- modules README, README.* and Everything are not really part of the -- library, so these modules are located in the top-level directory -- instead.
About
The Agda standard library
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Agda 99.6%
- Other 0.4%