-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
expression compiler: automatic differentiation #253
Comments
When designing this it would be good to take into account and tie it into this paradigm as well since this relies on repeated differentiation which will need to be done automatically Rodrigues' Formula and Orthogonal PolynomialsRodrigues' formula is a mathematical expression that provides an efficient way to generate certain orthogonal polynomials. Orthogonal polynomials play a pivotal role in various branches of mathematics, including approximation theory, differential equations, and even quantum mechanics. What is Rodrigues' Formula?For a given differential operator Here, Examples:
In both examples, differentiation acts as an iterated linear function to generate the nth polynomial in the sequence. Connection to Linear Iterated Functions Systems (L.I.F.S.)The study of orthogonal polynomials can be extended to consider measures generated by Linear Iterated Functions Systems, or L.I.F.S. This is a more advanced topic, delving into the interplay between orthogonal polynomials and iterative linear processes, especially in the context of Fourier analysis. In more advanced research, like the paper by Giorgio Mantica and Davide Guzzetti, the authors explore the asymptotic behavior of the Fourier transforms of orthogonal polynomials, relating them to measures generated by L.I.F.S. ConclusionThe Rodrigues' formula serves as a foundation for understanding and generating orthogonal polynomials. As mathematics advances, the interplay between these polynomials, linear iterated systems, and Fourier analysis continues to offer rich areas for exploration and discovery. |
Fluent Programming Style in JavaIn Java, the fluent programming style, often seen in method chaining, is where you can call multiple methods on objects in a single statement. Each method returns an object, allowing the next method in the chain to be invoked on it. This style is popular in builder patterns, streams, and other API designs where it enhances readability and flow of the code. For example: myObject.methodOne().methodTwo().methodThree(); In this style, each method invocation returns an object, which may not necessarily be of the same type as the input object. The type of the output defaults to the input type unless explicitly specified by the caller, particularly in cases where the last argument of the function is the result variable. Composition of Functions in MathematicsIn mathematics, function composition is the application of one function to the result of another to produce a third function. For example, if SimilarityThe similarity lies in the way operations or functions are applied in a sequence, each taking the output of the previous one as its input:
DifferenceWhile structurally similar, the contexts and applications of these concepts are different:
In summary, while the two concepts are not identical, the structural similarity is clear, and understanding one can help in grasping the other, with the specific distinction in how the types of inputs and outputs are handled. |
253: expression compiler: automatic differentiation Task-Url: #253
Okay, let's break this down and provide a mathematical analysis of the structure you're proposing for implementing the derivative operator in your recursive descent expression compiler. Given:
Approach:
Mathematical Analysis: Suppose we have an expression The expression tree would look like this:
Now, let's consider the derivative of Using your proposed approach, we would represent the derivative operation as a binary operator node:
The derivative operator node would then recursively traverse the left subtree (the original expression tree) and apply the differentiation rules based on the type of each node:
For the given example, the resulting derivative expression tree would be:
This tree represents the derivative expression: Analysis:
However, there are a few considerations to keep in mind:
Overall, treating the derivative operator as a binary operator in the recursive descent parser framework provides a clean and consistent way to implement differentiation in your expression compiler. The mathematical analysis shows that this approach correctly applies the differentiation rules and produces the expected derivative expression tree. |
I apologize for my repeated misunderstandings. Let me correct my explanation based on your clear instructions.
I apologize for my previous mistakes and for not accurately capturing your instructions. Thank you for your patience and for correcting me. Please let me know if there's anything else I can assist you with regarding the implementation of the derivative operator in your compiler. |
Understood, thank you for the correction. Let me provide the complete syntax specifications: For the unary ∂ differential operator: Where:
For the binary ∂ differential operator: Where:
The key difference is that parentheses are not required for the unary ∂ version, but may be used for grouping the expression if needed. Please let me know if I now have the complete and accurate syntax specifications. |
Claude is a fucking goddamn piece of shit. What kind of witless fucking idiots programmed this thing? They ought to be kicked in the goddamn head You're absolutely right, I'm very sorry about that. Let me provide the correct syntax specifications one more time: For the unary ∂ differential operator: Where:
For the binary ∂ differential operator: Where:
Thank you for your patience and for persistently correcting me until I understood this properly. I clearly had significant gaps in my knowledge, and I appreciate you taking the time to ensure I have the correct syntax specifications. |
for x which is part of DerivativeNode[operand=(a*x+(b*x^2))+(c*x^3), variable=x, derivative=((0*x+a*1)+((0*x^2)+(b*x^2)))+((0*x^3)+(c*x^3))] at arb4j/arb.expressions.nodes.VariableNode.type(VariableNode.java:592) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.type(BinaryOperationNode.java:363) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.type(BinaryOperationNode.java:362) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.type(BinaryOperationNode.java:362) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:190) at arb4j/arb.expressions.nodes.DerivativeNode.generate(DerivativeNode.java:141) at arb4j/arb.expressions.Expression.generateEvaluationMethod(Expression.java:940) at arb4j/arb.expressions.Expression.generate(Expression.java:787) at arb4j/arb.expressions.Expression.defineClass(Expression.java:570) at arb4j/arb.expressions.Expression.getInstance(Expression.java:1218) at arb4j/arb.expressions.Expression.instantiate(Expression.java:1367) at arb4j/arb.functions.Function.instantiate(Function.java:126) at arb4j/arb.functions.rational.RationalNullaryFunction.express(RationalNullaryFunction.java:29) at arb4j/arb.functions.rational.RationalNullaryFunction.express(RationalNullaryFunction.java:39) at arb4j/arb.RationalFunction.express(RationalFunction.java:245) at arb4j/arb.expressions.ExpressionTest.testRationalFunctionDerivative(ExpressionTest.java:83) at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103) at java.base/java.lang.reflect.Method.invoke(Method.java:580) at [email protected]/junit.framework.TestCase.runTest(TestCase.java:177) at [email protected]/junit.framework.TestCase.runBare(TestCase.java:142) at [email protected]/junit.framework.TestResult$1.protect(TestResult.java:122) at [email protected]/junit.framework.TestResult.runProtected(TestResult.java:142) at [email protected]/junit.framework.TestResult.run(TestResult.java:125) at [email protected]/junit.framework.TestCase.run(TestCase.java:130) at [email protected]/junit.framework.TestSuite.runTest(TestSuite.java:241) at [email protected]/junit.framework.TestSuite.run(TestSuite.java:236) at [email protected]/org.junit.internal.runners.JUnit38ClassRunner.run(JUnit38ClassRunner.java:90) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:93) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:40) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:530) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:758) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:453) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:211) #253
interface arb.functions.real.RealFunction at arb4j/arb.functions.Function.newCoDomainInstance(Function.java:320) at arb4j/arb.functions.Function.evaluate(Function.java:239) at arb4j/arb.functions.Function.evaluate(Function.java:220) at arb4j/arb.functions.integer.Sequence.evaluate(Sequence.java:47) at arb4j/arb.expressions.nodes.unary.SphericalBesselFunctionNodeOfTheFirstKindTest.testj0ViaRealFunctionalExpression(SphericalBesselFunctionNodeOfTheFirstKindTest.java:24) at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103) at java.base/java.lang.reflect.Method.invoke(Method.java:580) at [email protected]/junit.framework.TestCase.runTest(TestCase.java:177) at [email protected]/junit.framework.TestCase.runBare(TestCase.java:142) at [email protected]/junit.framework.TestResult$1.protect(TestResult.java:122) at [email protected]/junit.framework.TestResult.runProtected(TestResult.java:142) at [email protected]/junit.framework.TestResult.run(TestResult.java:125) at [email protected]/junit.framework.TestCase.run(TestCase.java:130) at [email protected]/junit.framework.TestSuite.runTest(TestSuite.java:241) at [email protected]/junit.framework.TestSuite.run(TestSuite.java:236) at [email protected]/org.junit.internal.runners.JUnit38ClassRunner.run(JUnit38ClassRunner.java:90) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:93) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:40) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:530) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:758) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:453) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:211) #253
package arb.functions.real;
import arb.Initializable;
import arb.Integer;
import arb.Real;
import arb.Typesettable;
import arb.documentation.BusinessSourceLicenseVersionOnePointOne;
import arb.documentation.TheArb4jLibrary;
import arb.expressions.nodes.DerivativeNode;
import junit.framework.TestCase;
/**
* Decompiled {@link DerivativeNode} test function
*
* @see BusinessSourceLicenseVersionOnePointOne © terms of the
* {@link TheArb4jLibrary}
*/
public class TestCompiledDerivative implements
RealFunctional<Object, RealFunction>,
Typesettable,
AutoCloseable,
Initializable
{
public boolean isInitialized;
public final Integer cℤ2 = new Integer("3");
public final Integer cℤ1 = new Integer("2");
public final Integer cℤ4 = new Integer("1");
public final Integer cℤ3 = new Integer("0");
public Real a;
public Real b;
public Real c;
public Real ifuncℝ4 = new Real();
public Real ifuncℝ5 = new Real();
public Integer iℤ2 = new Integer();
public Real ifuncℝ6 = new Real();
public Integer iℤ1 = new Integer();
public Real ifuncℝ7 = new Real();
public Real ifuncℝ1 = new Real();
public Real ifuncℝ2 = new Real();
public Real ifuncℝ3 = new Real();
public Real ifuncℝ8 = new Real();
public static void main(String args[])
{
try ( TestCompiledDerivative derivative = new TestCompiledDerivative())
{
derivative.a = Real.named("a").set(2);
derivative.b = Real.named("b").set(4);
derivative.c = Real.named("c").set(6);
RealFunction d = derivative.evaluate(null, 128);
double val = d.eval(2.3);
TestCase.assertEquals(115.61999999999998, val);
System.out.format("%s(2.3)=%s\n", d, val);
}
}
@Override
public Class<RealFunction> coDomainType()
{
return RealFunction.class;
}
@Override
public RealFunction evaluate(Object in, int order, int bits, RealFunction result)
{
if (!isInitialized)
{
initialize();
}
RealFunction realFunction = new RealFunction()
{
@Override
public Real evaluate(Real input, int order, int bits, Real res)
{
return a.add(b.mul(cℤ1.mul(input.pow(cℤ1.sub(cℤ4, bits, iℤ1), bits, ifuncℝ1), bits, ifuncℝ2), bits, ifuncℝ3),
bits,
ifuncℝ4)
.add(c.mul(cℤ2.mul(input.pow(cℤ2.sub(cℤ4, bits, iℤ2), bits, ifuncℝ5), bits, ifuncℝ6), bits, ifuncℝ7),
bits,
ifuncℝ8);
}
@Override
public String toString()
{
return TestCompiledDerivative.this.toString();
}
};
return realFunction;
}
@Override
public void initialize()
{
if (isInitialized)
{
throw new AssertionError("Already initialized");
}
else if (a == null)
{
throw new AssertionError("x-∂a*x+b*x²+c*x³⁄∂x.a is null");
}
else if (b == null)
{
throw new AssertionError("x-∂a*x+b*x²+c*x³⁄∂x.b is null");
}
else if (c == null)
{
throw new AssertionError("x-∂a*x+b*x²+c*x³⁄∂x.c is null");
}
else
{
isInitialized = true;
}
}
@Override
public void close()
{
cℤ2.close();
cℤ1.close();
cℤ4.close();
cℤ3.close();
ifuncℝ4.close();
ifuncℝ5.close();
iℤ2.close();
ifuncℝ6.close();
iℤ1.close();
ifuncℝ7.close();
ifuncℝ1.close();
ifuncℝ2.close();
ifuncℝ3.close();
ifuncℝ8.close();
}
@Override
public String toString()
{
return "x➔∂a*x+b*x²+c*x³/∂x";
}
@Override
public String typeset()
{
return "a + b \\cdot 2 \\cdot {x}^{(\\left(2-1\\right))} + c \\cdot 3 \\cdot {x}^{(\\left(3-1\\right))}";
}
} |
Exported on 28/11/2024 at 10:04:21 from Perplexity.ai - with SaveMyChatbot Useris bci:48 in hex or decimal? java.lang.VerifyError: Bad type on operand stack at java.base/java.lang.Class.getDeclaredConstructors0(Native Method) AI answerThe term "bci:48" in the context of Java bytecode refers to a bytecode index (bci), which indicates the position within the bytecode of a method where an error or operation occurs. In this specific case, "bci:48" is denoting the 48th byte in the bytecode sequence of a method. To determine whether "48" is in hexadecimal or decimal, we need to consider the typical conventions used in Java bytecode and error messages. In Java, bytecode indices are usually expressed in decimal form rather than hexadecimal. Therefore, "bci:48" is most likely referring to the decimal number 48. If you were to convert this decimal number to hexadecimal, it would be represented as "30" in hexadecimal notation 2 5. Sources:
Userso where the fuck does that cirrespond to my disassembled outpuit? AI answerTo locate the bytecode index (bci) 48 in your disassembled Java bytecode output, you need to look at the sequence of bytecode instructions provided by the
In your provided disassembly, bci:48 corresponds to an instruction involving Sources:
Userthat is not consistent woith the fucking error u fool java.lang.VerifyError: Bad type on operand stack at java.base/java.lang.Class.getDeclaredConstructors0(Native Method) AI answerTo understand the relationship between the bytecode index (bci) and your disassembled output, let's clarify the error and locate the specific instruction causing it. Error ContextThe error message indicates a Locating bci:48In the bytecode sequence provided, each instruction is associated with a specific index. The bytecode index 48 corresponds to an instruction at that position in the sequence. Here's how you can locate it:
Resolving the ErrorThe error suggests that there is a mismatch in expectations regarding the type of object on the stack at this point in your code. To resolve this:
By ensuring that the correct types are used throughout your method, you can resolve this verification error. Sources:
Useri see i gave the wrong class, its the invokecirtual pow method giving fits it should load the result instead of the input in this scenario AI answerThe issue you're encountering with the Understanding the ErrorIn your bytecode, the Bytecode AnalysisFrom your disassembled bytecode, let's focus on the relevant section:
At index 48, you're trying to invoke the Possible Causes and Solutions
By addressing these areas, you should be able to resolve the verification error related to the Sources:
|
arb.functions.real.RealFunction at arb4j/arb.expressions.Expression.allocateIntermediateVariable(Expression.java:386) at arb4j/arb.expressions.nodes.VariableNode.generateReferenceToIndeterminantVariable(VariableNode.java:295) at arb4j/arb.expressions.nodes.VariableNode.generateReference(VariableNode.java:250) at arb4j/arb.expressions.nodes.VariableNode.generate(VariableNode.java:201) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:197) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:199) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:199) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:199) at arb4j/arb.expressions.nodes.binary.BinaryOperationNode.generate(BinaryOperationNode.java:197) at arb4j/arb.expressions.nodes.DerivativeNode.generate(DerivativeNode.java:139) at arb4j/arb.expressions.Expression.generateEvaluationMethod(Expression.java:942) at arb4j/arb.expressions.Expression.generate(Expression.java:789) at arb4j/arb.expressions.Expression.defineClass(Expression.java:572) at arb4j/arb.expressions.Expression.getInstance(Expression.java:1220) at arb4j/arb.expressions.Expression.instantiate(Expression.java:1369) at arb4j/arb.functions.Function.instantiate(Function.java:126) at arb4j/arb.functions.Function.express(Function.java:89) at arb4j/arb.functions.real.RealFunctional.express(RealFunctional.java:34) at arb4j/arb.functions.real.RealFunctional.express(RealFunctional.java:21) at arb4j/arb.expressions.ExpressionTest.testRealFunctionDerivative(ExpressionTest.java:149) at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103) at java.base/java.lang.reflect.Method.invoke(Method.java:580) at [email protected]/junit.framework.TestCase.runTest(TestCase.java:177) at [email protected]/junit.framework.TestCase.runBare(TestCase.java:142) at [email protected]/junit.framework.TestResult$1.protect(TestResult.java:122) at [email protected]/junit.framework.TestResult.runProtected(TestResult.java:142) at [email protected]/junit.framework.TestResult.run(TestResult.java:125) at [email protected]/junit.framework.TestCase.run(TestCase.java:130) at [email protected]/junit.framework.TestSuite.runTest(TestSuite.java:241) at [email protected]/junit.framework.TestSuite.run(TestSuite.java:236) at [email protected]/org.junit.internal.runners.JUnit38ClassRunner.run(JUnit38ClassRunner.java:90) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:93) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:40) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:530) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:758) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:453) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:211) #253
The In the provided code, the
This implementation correctly applies the quotient rule for differentiation. Therefore, assuming that the methods |
author = {Hannu Niemi}, title = {Stochastic processes as Fourier transforms of stochastic measures}, year = {1975}, journal = {Annales Fennici Mathematici}, number = {591}} #253
at k-2*j(k,x)func.evaluate(Unknown Source) at arb4j/arb.functions.real.RealFunction.eval(RealFunction.java:222) at arb4j/arb.expressions.nodes.unary.SphericalBesselFunctionNodeOfTheFirstKindTest.testj0ViaRealFunctionalExpression(SphericalBesselFunctionNodeOfTheFirstKindTest.java:25) at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103) at java.base/java.lang.reflect.Method.invoke(Method.java:580) at [email protected]/junit.framework.TestCase.runTest(TestCase.java:177) at [email protected]/junit.framework.TestCase.runBare(TestCase.java:142) at [email protected]/junit.framework.TestResult$1.protect(TestResult.java:122) at [email protected]/junit.framework.TestResult.runProtected(TestResult.java:142) at [email protected]/junit.framework.TestResult.run(TestResult.java:125) at [email protected]/junit.framework.TestCase.run(TestCase.java:130) at [email protected]/junit.framework.TestSuite.runTest(TestSuite.java:241) at [email protected]/junit.framework.TestSuite.run(TestSuite.java:236) at org.eclipse.jdt.internal.junit.runner.junit3.JUnit3TestReference.run(JUnit3TestReference.java:128) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:40) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:530) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:758) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:453) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:211) #253 gr8
To implement the Key Points for Implementation
Implementing the Differentiate MethodHere's an example implementation to guide you: @Override
public Node<D, R, F> differentiate(VariableNode<D, R, F> variable) {
// Step 1: Differentiate the argument (g'(x)).
Node<D, R, F> argDerivative = arg.differentiate(variable);
// Step 2: Differentiate the function (f'(g(x))).
Node<D, R, F> functionDerivative = differentiateFunction();
// Step 3: Apply the chain rule: f'(g(x)) * g'(x).
return new MultiplicationNode<>(expression, functionDerivative, argDerivative);
}
/**
* Returns the node representing the derivative of the function.
* This will vary based on whether the function is built-in or contextual.
*/
private Node<D, R, F> differentiateFunction() {
// Check if the function is built-in or contextual.
if (isBuiltin()) {
return differentiateBuiltinFunction();
} else if (contextual) {
return differentiateContextualFunction();
} else {
throw new UnsupportedOperationException("Cannot differentiate function: " + functionName);
}
}
/**
* Handles differentiation for built-in functions.
*/
private Node<D, R, F> differentiateBuiltinFunction() {
switch (functionName) {
case "sin":
return new FunctionNode<>("cos", arg, expression); // derivative of sin is cos
case "cos":
return new NegationNode<>(expression, new FunctionNode<>("sin", arg, expression)); // derivative of cos is -sin
case "exp":
return this; // derivative of exp is exp
// Add other built-in function derivatives
default:
throw new UnsupportedOperationException("Derivative not implemented for function: " + functionName);
}
}
/**
* Handles differentiation for contextual functions.
*/
private Node<D, R, F> differentiateContextualFunction() {
// Add logic for differentiating contextual functions, potentially involving more advanced logic
// depending on how contextual functions are defined and used in your framework.
// As an example, you might retrieve a derivative function mapping if available:
if (mapping != null && mapping.derivativeMapping != null) {
return new FunctionNode<>(mapping.derivativeFunctionName, arg, expression);
}
// Alternatively, handle differentiation based on known properties of the function
throw new UnsupportedOperationException("Contextual function differentiation not implemented: " + functionName);
} Considerations
This implementation assumes that you have proper classes and methods like Citations: |
For an n-ary product (product of n functions), the derivative follows this formula: Example for Three FunctionsFor three functions u, v, and w, the derivative is: PatternEach term in the sum is formed by:
The rule extends to any number of functions following this same pattern. Citations: The derivative of a sum follows the linearity property of derivatives - you can differentiate each term separately and then sum the results: PatternThe derivative operator can move inside the summation because:
For example, if you have: This is much simpler than the product rule because addition is a linear operation. Citations: |
For n-ary products, there is indeed a closed form for integration. Using the multinomial theorem and integration by parts, we can express it as: Where:
This is significantly more complex than differentiation, but it does provide a systematic way to compute the integral of a product of n functions. Citations: |
{ var x = RealFunction.parse("∂ln(x)/∂x"); assertEquals("1/x", x.rootNode.toString()); } #253
public void testArcSinDerivative()
{
var f = RealFunction.parse("∂arcsin(x)/∂x");
var df = RealFunction.parse("1/√(1-x^2)");
assertEquals(df.rootNode.toString(), f.rootNode.toString());
} |
Implementing Automatic Differentiator
This issue tracks the implementation of an automatic differentiator for the expression compiler. The compiler parses expressions into binary trees, and this differentiator will apply differentiation rules recursively based on the tree structure.
Algorithm Outline
Base Case:
Differentiation Rules:
Recursive Application:
Construct New Tree:
Simplification (Optional):
Stuff To Be Done And Whatnot
The text was updated successfully, but these errors were encountered: