Skip to content

Commit

Permalink
Add BitSeg NucSeg dataset (#398)
Browse files Browse the repository at this point in the history
  • Loading branch information
anwai98 authored Oct 29, 2024
1 parent e296039 commit 2dd4965
Show file tree
Hide file tree
Showing 4 changed files with 180 additions and 0 deletions.
24 changes: 24 additions & 0 deletions scripts/datasets/light_microscopy/check_bitdepth_nucseg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import os
import sys

from torch_em.util.debug import check_loader
from torch_em.data.datasets import get_bitdepth_nucseg_loader

sys.path.append("..")


def check_bitdepth_nucseg():
from util import ROOT

loader = get_bitdepth_nucseg_loader(
path=os.path.join(ROOT, "bitdepth_nucseg"),
patch_shape=(512, 512),
batch_size=1,
download=True,
)

check_loader(loader, 8, instance_labels=True)


if __name__ == "__main__":
check_bitdepth_nucseg()
1 change: 1 addition & 0 deletions torch_em/data/datasets/light_microscopy/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .arvidsson import get_arvidsson_loader, get_arvidsson_dataset
from .bitdepth_nucseg import get_bitdepth_nucseg_loader, get_bitdepth_nucseg_dataset
from .cartocell import get_cartocell_loader, get_cartocell_dataset
from .cellpose import get_cellpose_loader, get_cellpose_dataset
from .cellseg_3d import get_cellseg_3d_loader, get_cellseg_3d_dataset
Expand Down
1 change: 1 addition & 0 deletions torch_em/data/datasets/light_microscopy/arvidsson.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,7 @@ def get_arvidsson_loader(
Args:
path: Filepath to a folder where the downloaded data will be saved.
batch_size: The batch size for training.
patch_shape: The patch shape to use for training.
split: The data split to use. Either 'train', 'val' or 'test'.
download: Whether to download the data if it is not present.
Expand Down
154 changes: 154 additions & 0 deletions torch_em/data/datasets/light_microscopy/bitdepth_nucseg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
"""The BitDepth NucSeg dataset contains annotations for nucleus segmentation
in DAPI stained fluorescence microscopy images.
The dataset is located at https://github.com/masih4/BitDepth_NucSeg/
This dataset is from the publication https://doi.org/10.3390/diagnostics11060967.
Please cite it if you use this dataset in your research.
"""

import os
import shutil
import subprocess
from glob import glob
from natsort import natsorted
from typing import Union, Tuple, Optional, Literal, List

from torch.utils.data import Dataset, DataLoader

import torch_em

from .. import util


URL = "https://github.com/masih4/BitDepth_NucSeg"


def _remove_other_files(path):
"Remove other files from the git repository"
all_files = glob(os.path.join(path, "*"))
all_files.extend(glob(os.path.join(path, ".*")))
for _file in all_files:
if os.path.basename(_file) == "data":
continue

if os.path.isdir(_file):
shutil.rmtree(_file)
else:
os.remove(_file)


def get_bitdepth_nucseg_data(path: Union[os.PathLike, str], download: bool = False) -> str:
"""Download the BitDepth NucSeg dataset for nucleus segmentation.
Args:
path: Filepath to a folder where the downloaded data will be saved.
download: Whether to download the data if it is not present.
Returns:
The filepath to the downloaded data.
"""
data_dir = os.path.join(path, "data")
if os.path.exists(data_dir):
return data_dir

if not download:
raise ValueError("The data directory is not found and download is set to False.")

# The data is located in a GitHub repository as a zipfile.
subprocess.run(["git", "clone", URL, path])
# Remove all git files besides the zipfile
_remove_other_files(path)

zip_path = os.path.join(path, "data", "data.zip")
util.unzip(zip_path=zip_path, dst=data_dir)

return data_dir


def get_bitdepth_nucseg_paths(
path: Union[os.PathLike, str],
magnification: Optional[Literal['20x', '40x_air', '40x_oil' '63x_oil']] = None,
download: bool = False
) -> Tuple[List[str], List[str]]:
"""Get paths to the BitDepth NucSeg data.
Args:
path: Filepath to a folder where the downloaded data will be saved.
magnification: The magnification scale for the input images.
download: Whether to download the data if it is not present.
Returns:
List of filepaths for the image data.
List of filepaths for the label data.
"""
data_dir = get_bitdepth_nucseg_data(path, download)

if magnification is None:
magnification = "*"
else:
if magnification.find("_") != -1:
_splits = magnification.split("_")
magnification = f"{_splits[0]} {_splits[1]}"

raw_paths = natsorted(glob(os.path.join(data_dir, magnification, "images_16bit", "*.tif")))
label_paths = natsorted(glob(os.path.join(data_dir, magnification, "label masks", "*.tif")))

return raw_paths, label_paths


def get_bitdepth_nucseg_dataset(
path: Union[os.PathLike, str],
patch_shape: Tuple[int, int],
magnification: Optional[Literal['20x', '40x_air', '40x_oil' '63x_oil']] = None,
download: bool = False,
**kwargs
) -> Dataset:
"""Get the BitDepth NucSeg dataset for nucleus segmentation.
Args:
path: Filepath to a folder where the downloaded data will be saved.
patch_shape: The patch shape to use for training.
magnification: The magnification scale for the input images.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset`.
Returns:
The segmentation dataset.
"""
raw_paths, label_paths = get_bitdepth_nucseg_paths(path, magnification, download)

return torch_em.default_segmentation_dataset(
raw_paths=raw_paths,
raw_key=None,
label_paths=label_paths,
label_key=None,
is_seg_dataset=False,
patch_shape=patch_shape,
**kwargs
)


def get_bitdepth_nucseg_loader(
path: Union[os.PathLike, str],
batch_size: int,
patch_shape: Tuple[int, int],
magnification: Optional[Literal['20x', '40x_air', '40x_oil' '63x_oil']] = None,
download: bool = False,
**kwargs
) -> DataLoader:
"""Get the BitDepth NucSeg dataloader for nucleus segmentation.
Args:
path: Filepath to a folder where the downloaded data will be saved.
batch_size: The batch size for training.
patch_shape: The patch shape to use for training.
magnification: The magnification scale for the input images.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset` or for the PyTorch DataLoader.
Returns:
The DataLoader.
"""
ds_kwargs, loader_kwargs = util.split_kwargs(torch_em.default_segmentation_dataset, **kwargs)
dataset = get_bitdepth_nucseg_dataset(path, patch_shape, magnification, download, **ds_kwargs)
return torch_em.get_data_loader(dataset, batch_size, **loader_kwargs)

0 comments on commit 2dd4965

Please sign in to comment.