This repository implements a capsule model named IntentCapsNet-ZSL on the SNIPS-NLU dataset with Tensorflow.
Please see the following paper for the details:
Congying Xia*, Chenwei Zhang*, Xiaohui Yan, Yi Chang, Philip S. Yu. Zero-shot User Intent Detection via Capsule Neural Networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018. (* equally contributed)
https://arxiv.org/abs/1809.00385
Python 2.7.12
Tensorflow 1.6.0
Numpy
Gensim
Sklearn
python main.py
If you find our code useful, please cite our paper.
@article{xia2018zero,
title={Zero-shot User Intent Detection via Capsule Neural Networks},
author={Xia, Congying and Zhang, Chenwei and Yan, Xiaohui and Chang, Yi and Yu, Philip S},
journal={arXiv preprint arXiv:1809.00385},
year={2018}
}
A pytorch version can be found here: https://github.com/nhhoang96/ZeroShotCapsule-PyTorch-
Thanks to Hoang Nguyen @nhhoang96.
https://github.com/soskek/dynamic_routing_between_capsules
https://github.com/flrngel/Self-Attentive-tensorflow