Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 41 additions & 30 deletions comfy_extras/nodes_differential_diffusion.py
Original file line number Diff line number Diff line change
@@ -1,34 +1,41 @@
# code adapted from https://github.com/exx8/differential-diffusion

from typing_extensions import override

import torch
from comfy_api.latest import ComfyExtension, io


class DifferentialDiffusion(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="DifferentialDiffusion",
display_name="Differential Diffusion",
category="_for_testing",
inputs=[
io.Model.Input("model"),
io.Float.Input(
"strength",
default=1.0,
min=0.0,
max=1.0,
step=0.01,
optional=True,
),
],
outputs=[io.Model.Output()],
is_experimental=True,
)

class DifferentialDiffusion():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
},
"optional": {
"strength": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False

def apply(self, model, strength=1.0):
def execute(cls, model, strength=1.0) -> io.NodeOutput:
model = model.clone()
model.set_model_denoise_mask_function(lambda *args, **kwargs: self.forward(*args, **kwargs, strength=strength))
return (model, )
model.set_model_denoise_mask_function(lambda *args, **kwargs: cls.forward(*args, **kwargs, strength=strength))
return io.NodeOutput(model)

def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
@classmethod
def forward(cls, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
Expand All @@ -53,9 +60,13 @@ def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options
return binary_mask


NODE_CLASS_MAPPINGS = {
"DifferentialDiffusion": DifferentialDiffusion,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DifferentialDiffusion": "Differential Diffusion",
}
class DifferentialDiffusionExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
DifferentialDiffusion,
]


async def comfy_entrypoint() -> DifferentialDiffusionExtension:
return DifferentialDiffusionExtension()
Loading