This is a small utility to generate JSON schemas for python functions. With power of type annotations, it is possible to generate a schema for a function without describing it twice.
At this moment, extracting schema from a function is useful for OpenAI Assistant Tool Calling, OpenAI API function-call, and Anthropic Claude Tool calling feature. And it can be used for other purposes for example to generate documentation in the future.
pip install function-schemafrom typing import Annotated, Optional
from function_schema import Doc
import enum
def get_weather(
city: Annotated[str, Doc("The city to get the weather for")],
unit: Annotated[
Optional[str],
Doc("The unit to return the temperature in"),
enum.Enum("Unit", "celcius fahrenheit")
] = "celcius",
) -> str:
"""Returns the weather for the given city."""
return f"Weather for {city} is 20°C"Function description is taken from the docstring.
Type hinting with typing.Annotated for annotate additional information about the parameters and return type.
Then you can generate a schema for this function:
import json
from function_schema import get_function_schema
schema = get_function_schema(get_weather)
print(json.dumps(schema, indent=2))Will output:
{
"name": "get_weather",
"description": "Returns the weather for the given city.",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
},
"unit": {
"type": "string",
"description": "The unit to return the temperature in",
"enum": [
"celcius",
"fahrenheit"
],
"default": "celcius"
}
},
}
"required": [
"city"
]
}For claude, you should pass 2nd argument as SchemaFormat.claude or claude:
from function_schema import get_function_schema
schema = get_function_schema(get_weather, "claude")Please refer to the Claude tool use documentation for more information.
You can use any type hinting supported by python for the first argument of Annotated. including:
typing.Literal, typing.Optional, typing.Union, and T | None for python 3.10+.
Doc class or plain string in Annotated is used for describe the parameter.
Enumeratable candidates can be defined with enum.Enum in the argument of Annotated.
In shorthand, you can use typing.Literal as the type will do the same thing:
from typing import Annotated, Literal
def get_animal(
animal: Annotated[Literal["dog", "cat"], Doc("The animal to get")],
) -> str:
"""Returns the animal."""
return f"Animal is {animal}"function_schema mymodule.py my_function | jqFor comprehensive usage examples with different AI platforms, see the examples directory:
- Basic Usage - Core features and function definition patterns
- OpenAI Integration - Assistant API and Chat Completion examples
- Claude Integration - Anthropic Claude tool calling examples
- MCP Integration - Model Context Protocol examples
- CLI Usage - Command-line interface examples
MIT License