Tools for working with pandas in your Django projects
- Christopher Clarke
- Bertrand Bordage
- Guillaume Thomas
- Parbhat Puri
- Fredrik Burman (coachHIPPO)
- Safe Hammad
- Jeff Sternber
- @MiddleFork
- Daniel Andrlik
- Kevin Abbot
- Yousuf Jawwad
- @henhuy
- Hélio Meira Lins
- @utpyngo
- Anthony Monthe
- Vincent Toupet
- Anton Ian Sipos
- Thomas Grainger
- Ryan Smith
This is release facilitates running of test with Python 3.10 and automates the publishing of the package to PYPI as per PR #146 (again much thanks @graingert). As usual we have attempted support legacy versions of Python/Django/Pandas and this sometimes results in deperation errors being displayed in when test are run. To avoid use python -Werror runtests.py
django-pandas
supports Django (>=1.4.5) or later
and requires django-model-utils (>= 1.4.0) and Pandas (>= 0.12.0).
Note because of problems with the requires
directive of setuptools
you probably need to install numpy
in your virtualenv before you install
this package or if you want to run the test suite
pip install numpy pip install -e .[test] python runtests.py
Some pandas
functionality requires parts of the Scipy stack.
You may wish to consult http://www.scipy.org/install.html
for more information on installing the Scipy
stack.
You need to install your preferred version of Django. as that Django 2 does not support Python 2.
Please file bugs and send pull requests to the GitHub repository and issue tracker.
Start by creating a new virtualenv
for your project
mkvirtualenv myproject
Next install numpy
and pandas
and optionally scipy
pip install numpy pip install pandas
You may want to consult the scipy documentation for more information
on installing the Scipy
stack.
Finally, install django-pandas
using pip
:
pip install django-pandas
or install the development version from github
pip install https://github.com/chrisdev/django-pandas/tarball/master
The django-pandas.io
module provides some convenience methods to
facilitate the creation of DataFrames from Django QuerySets.
Parameters
- qs: A Django QuerySet.
- fieldnames: A list of model field names to use in creating the
DataFrame
.- You can span a relationship in the usual Django way by using double underscores to specify a related field in another model
- index_col: Use specify the field name to use for the
DataFrame
index.- If the index field is not in the field list it will be appended
- coerce_float : Boolean, defaults to True
- Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point.
- verbose: If this is
True
then populate the DataFrame with the- human readable versions of any foreign key or choice fields else use the actual values set in the model.
- column_names: If not None, use to override the column names in the
- DateFrame
Assume that this is your model:
class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField()
First create a query set:
from django_pandas.io import read_frame qs = MyModel.objects.all()
To create a dataframe using all the fields in the underlying model
df = read_frame(qs)
The df will contain human readable column values for foreign key and choice fields. The DataFrame will include all the fields in the underlying model including the primary key. To create a DataFrame using specified field names:
df = read_frame(qs, fieldnames=['age', 'wage', 'full_name'])
To set full_name
as the DataFrame
index
qs.to_dataframe(['age', 'wage'], index_col='full_name'])
You can use filters and excludes
qs.filter(age__gt=20, department='IT').to_dataframe(index_col='full_name')
django-pandas
provides a custom manager to use with models that
you want to render as Pandas Dataframes. The DataFrameManager
manager provides the to_dataframe
method that returns
your models queryset as a Pandas DataFrame. To use the DataFrameManager, first
override the default manager (objects) in your model's definition
as shown in the example below
#models.py from django_pandas.managers import DataFrameManager class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField() objects = DataFrameManager()
This will give you access to the following QuerySet methods:
to_dataframe
to_timeseries
to_pivot_table
Returns a DataFrame from the QuerySet
Parameters
- fieldnames: The model field names to utilise in creating the frame.
- to span a relationship, use the field name of related fields across models, separated by double underscores,
- index: specify the field to use for the index. If the index
- field is not in the field list it will be appended
- coerce_float: Attempt to convert the numeric non-string data
- like object, decimal etc. to float if possible
- verbose: If this is
True
then populate the DataFrame with the- human readable versions of any foreign key or choice fields else use the actual value set in the model.
Create a dataframe using all the fields in your model as follows
qs = MyModel.objects.all() df = qs.to_dataframe()
This will include your primary key. To create a DataFrame using specified field names:
df = qs.to_dataframe(fieldnames=['age', 'department', 'wage'])
To set full_name
as the index
qs.to_dataframe(['age', 'department', 'wage'], index='full_name'])
You can use filters and excludes
qs.filter(age__gt=20, department='IT').to_dataframe(index='full_name')
A convenience method for creating a time series i.e the DataFrame index is instance of a DateTime or PeriodIndex
Parameters
- fieldnames: The model field names to utilise in creating the frame.
- to span a relationship, just use the field name of related fields across models, separated by double underscores,
- index: specify the field to use for the index. If the index
- field is not in the field list it will be appended. This is mandatory.
- storage: Specify if the queryset uses the wide or long format
- for data.
- pivot_columns: Required once the you specify long format
- storage. This could either be a list or string identifying the field name or combination of field. If the pivot_column is a single column then the unique values in this column become a new columns in the DataFrame If the pivot column is a list the values in these columns are concatenated (using the '-' as a separator) and these values are used for the new timeseries columns
- values: Also required if you utilize the long storage the
- values column name is use for populating new frame values
- freq: the offset string or object representing a target conversion
- rs_kwargs: Arguments based on pandas.DataFrame.resample
- verbose: If this is
True
then populate the DataFrame with the- human readable versions of any foreign key or choice fields else use the actual value set in the model.
Using a long storage format
#models.py class LongTimeSeries(models.Model): date_ix = models.DateTimeField() series_name = models.CharField(max_length=100) value = models.FloatField() objects = DataFrameManager()
Some sample data::
======== ===== ===== date_ix series_name value ======== ===== ====== 2010-01-01 gdp 204699 2010-01-01 inflation 2.0 2010-01-01 wages 100.7 2010-02-01 gdp 204704 2010-02-01 inflation 2.4 2010-03-01 wages 100.4 2010-02-01 gdp 205966 2010-02-01 inflation 2.5 2010-03-01 wages 100.5 ========== ========== ======
Create a QuerySet
qs = LongTimeSeries.objects.filter(date_ix__year__gte=2010)
Create a timeseries dataframe
df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long') df.head() date_ix gdp inflation wages 2010-01-01 204966 2.0 100.7 2010-02-01 204704 2.4 100.4 2010-03-01 205966 2.5 100.5
Using a wide storage format
class WideTimeSeries(models.Model): date_ix = models.DateTimeField() col1 = models.FloatField() col2 = models.FloatField() col3 = models.FloatField() col4 = models.FloatField() objects = DataFrameManager() qs = WideTimeSeries.objects.all() rs_kwargs = {'how': 'sum', 'kind': 'period'} df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long', freq='M', rs_kwargs=rs_kwargs)
A convenience method for creating a pivot table from a QuerySet
Parameters
- fieldnames: The model field names to utilise in creating the frame.
- to span a relationship, just use the field name of related fields across models, separated by double underscores,
- values : column to aggregate, optional
- rows : list of column names or arrays to group on
- Keys to group on the x-axis of the pivot table
- cols : list of column names or arrays to group on
- Keys to group on the y-axis of the pivot table
- aggfunc : function, default numpy.mean, or list of functions
- If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
- fill_value : scalar, default None
- Value to replace missing values with
- margins : boolean, default False
- Add all row / columns (e.g. for subtotal / grand totals)
- dropna : boolean, default True
Example
# models.py class PivotData(models.Model): row_col_a = models.CharField(max_length=15) row_col_b = models.CharField(max_length=15) row_col_c = models.CharField(max_length=15) value_col_d = models.FloatField() value_col_e = models.FloatField() value_col_f = models.FloatField() objects = DataFrameManager()
Usage
rows = ['row_col_a', 'row_col_b'] cols = ['row_col_c'] pt = qs.to_pivot_table(values='value_col_d', rows=rows, cols=cols)