Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 19 additions & 3 deletions process_experiment_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,25 @@ def read_csv(file_path):
def merge_data(main_df, additional_df, on='timestamp', tolerance=MERGE_TOLERANCE):
"""Merge dataframes based on the closest preceding timestamp with a tolerance."""
additional_df['timestamp'] = pd.to_datetime(additional_df['timestamp'])
merged_df = pd.merge_asof(main_df.sort_values('timestamp'),
additional_df.sort_values('timestamp'),
on='timestamp', direction='backward', tolerance=tolerance)
merged_df = pd.merge_asof(
main_df.sort_values('timestamp'),
additional_df.sort_values('timestamp'),
on='timestamp',
direction='backward',
tolerance=tolerance,
suffixes=('', '_extra'),
)

# Preserve total_power_draw if present in either dataframe
if 'total_power_draw_extra' in merged_df.columns:
if 'total_power_draw' not in merged_df.columns:
merged_df.rename(columns={'total_power_draw_extra': 'total_power_draw'}, inplace=True)
else:
merged_df['total_power_draw'] = merged_df['total_power_draw'].fillna(merged_df['total_power_draw_extra'])
merged_df.drop(columns=['total_power_draw_extra'], inplace=True)
elif 'total_power_draw' not in merged_df.columns and 'power_draw' in merged_df.columns:
merged_df['total_power_draw'] = merged_df['power_draw']

return merged_df

def process_inference_data(experiment_log, inference_stats, gpu_metrics):
Expand Down
12 changes: 9 additions & 3 deletions recommend.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,17 @@

# Function to calculate summary statistics
def calculate_summary(data):
numeric_data = data.select_dtypes(include='number')
numeric_data = data.select_dtypes(include='number').copy()
numeric_data['max_watt'] = data['max_watt']
grouped = numeric_data.groupby('max_watt').mean() # Use mean instead of median
grouped['total_time_min'] = data.groupby('max_watt').apply(lambda x: (x['timestamp'].max() - x['timestamp'].min()).total_seconds() / 60.0)
grouped['energy_consumption_watt_min'] = grouped['power_draw'] * grouped['total_time_min']
grouped['total_time_min'] = (
data.groupby('max_watt').apply(
lambda x: (x['timestamp'].max() - x['timestamp'].min()).total_seconds() / 60.0
)
)

power_col = 'total_power_draw' if 'total_power_draw' in grouped.columns else 'power_draw'
grouped['energy_consumption_watt_min'] = grouped[power_col] * grouped['total_time_min']
return grouped

# Function to recommend sweet spot
Expand Down