NOTE:
Some folks reported signigiface slow down in the lastest version including large-v2
checkpoint, therefore it has been temporaily removed from https://replicate.com/openai/whisper, but added here https://replicate.com/cjwbw/whisper instead if you want to access it.
Have personally tested both versions however did not find the slow-down issue as reported. It has been raised to the team and see how to proceed regarding merge back to the mainline model.
[Blog] [Paper] [Model card] [Colab example]
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.
A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
We used Python 3.9.9 and PyTorch 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.7 or later and recent PyTorch versions. The codebase also depends on a few Python packages, most notably HuggingFace Transformers for their fast tokenizer implementation and ffmpeg-python for reading audio files. The following command will pull and install the latest commit from this repository, along with its Python dependencies
pip install git+https://github.com/openai/whisper.git
To update the package to the latest version of this repository, please run:
pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git
It also requires the command-line tool ffmpeg
to be installed on your system, which is available from most package managers:
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg
# on Arch Linux
sudo pacman -S ffmpeg
# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg
# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg
# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg
You may need rust
installed as well, in case tokenizers does not provide a pre-built wheel for your platform. If you see installation errors during the pip install
command above, please follow the Getting started page to install Rust development environment. Additionally, you may need to configure the PATH
environment variable, e.g. export PATH="$HOME/.cargo/bin:$PATH"
. If the installation fails with No module named 'setuptools_rust'
, you need to install setuptools_rust
, e.g. by running:
pip install setuptools-rust
There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and relative speed.
Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
---|---|---|---|---|---|
tiny | 39 M | tiny.en |
tiny |
~1 GB | ~32x |
base | 74 M | base.en |
base |
~1 GB | ~16x |
small | 244 M | small.en |
small |
~2 GB | ~6x |
medium | 769 M | medium.en |
medium |
~5 GB | ~2x |
large | 1550 M | N/A | large |
~10 GB | 1x |
For English-only applications, the .en
models tend to perform better, especially for the tiny.en
and base.en
models. We observed that the difference becomes less significant for the small.en
and medium.en
models.
Whisper's performance varies widely depending on the language. The figure below shows a WER breakdown by languages of Fleurs dataset, using the large
model. More WER and BLEU scores corresponding to the other models and datasets can be found in Appendix D in the paper.
Please use the 🙌 Show and tell category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc.
The code and the model weights of Whisper are released under the MIT License. See LICENSE for further details.