-
Notifications
You must be signed in to change notification settings - Fork 185
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #158 from LorenzoAgnolucci/arniqa
add ARNIQA
- Loading branch information
Showing
3 changed files
with
240 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
r"""ARNIQA: Learning Distortion Manifold for Image Quality Assessment | ||
@inproceedings{agnolucci2024arniqa, | ||
title={ARNIQA: Learning Distortion Manifold for Image Quality Assessment}, | ||
author={Agnolucci, Lorenzo and Galteri, Leonardo and Bertini, Marco and Del Bimbo, Alberto}, | ||
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, | ||
pages={189--198}, | ||
year={2024} | ||
} | ||
Reference: | ||
- Arxiv link: https://arxiv.org/abs/2310.14918 | ||
- Official Github: https://github.com/miccunifi/ARNIQA | ||
""" | ||
|
||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
import torchvision.models | ||
from typing import Tuple | ||
import warnings | ||
from collections import OrderedDict | ||
|
||
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||
from pyiqa.utils.registry import ARCH_REGISTRY | ||
from pyiqa.archs.arch_util import load_pretrained_network | ||
|
||
# Avoid warning related to loading a jit model from torch.hub | ||
warnings.filterwarnings("ignore", category=UserWarning, module="torch.serialization") | ||
|
||
available_datasets_ranges = { | ||
"live": (1, 100), | ||
"csiq": (0, 1), | ||
"tid": (0, 9), | ||
"kadid": (1, 5), | ||
"koniq": (1, 100), | ||
"clive": (1, 100), | ||
"flive": (1, 100), | ||
"spaq": (1, 100) | ||
} | ||
|
||
available_datasets_mos_types = { | ||
"live": "dmos", | ||
"csiq": "dmos", | ||
"tid": "mos", | ||
"kadid": "mos", | ||
"koniq": "mos", | ||
"clive": "mos", | ||
"flive": "mos", | ||
"spaq": "mos" | ||
} | ||
|
||
base_url = "https://github.com/miccunifi/ARNIQA/releases/download/weights" | ||
|
||
default_model_urls = { | ||
"ARNIQA": f"{base_url}/ARNIQA.pth", | ||
"live": f"{base_url}/regressor_live.pth", | ||
"csiq": f"{base_url}/regressor_csiq.pth", | ||
"tid": f"{base_url}/regressor_tid2013.pth", | ||
"kadid": f"{base_url}/regressor_kadid10k.pth", | ||
"koniq": f"{base_url}/regressor_koniq10k.pth", | ||
"clive": f"{base_url}/regressor_clive.pth", | ||
"flive": f"{base_url}/regressor_flive.pth", | ||
"spaq": f"{base_url}/regressor_spaq.pth" | ||
} | ||
|
||
|
||
@ARCH_REGISTRY.register() | ||
class ARNIQA(nn.Module): | ||
def __init__(self, | ||
regressor_dataset: str = "koniq", | ||
): | ||
super().__init__() | ||
|
||
self.regressor_dataset = regressor_dataset | ||
|
||
self.encoder = torchvision.models.resnet50( | ||
weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1) # V1 weights work better than V2 | ||
self.feat_dim = self.encoder.fc.in_features | ||
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1]) | ||
|
||
encoder_state_dict = torch.hub.load_state_dict_from_url(default_model_urls["ARNIQA"], progress=True, | ||
map_location="cpu") | ||
cleaned_encoder_state_dict = OrderedDict() | ||
for key, value in encoder_state_dict.items(): | ||
# Remove the prefix | ||
if key.startswith("model."): | ||
new_key = key[6:] | ||
cleaned_encoder_state_dict[new_key] = value | ||
|
||
self.encoder.load_state_dict(cleaned_encoder_state_dict) | ||
self.encoder.eval() | ||
|
||
self.regressor: nn.Module = torch.hub.load_state_dict_from_url(default_model_urls[self.regressor_dataset], | ||
progress=True, | ||
map_location="cpu") # Load regressor from torch.hub as JIT model | ||
self.regressor.eval() | ||
|
||
self.default_mean = torch.Tensor(IMAGENET_DEFAULT_MEAN).view(1, 3, 1, 1) | ||
self.default_std = torch.Tensor(IMAGENET_DEFAULT_STD).view(1, 3, 1, 1) | ||
|
||
def forward(self, x: torch.Tensor) -> float: | ||
x, x_ds = self._preprocess(x) | ||
|
||
f = F.normalize(self.encoder(x), dim=1) | ||
f_ds = F.normalize(self.encoder(x_ds), dim=1) | ||
f_combined = torch.hstack((f, f_ds)).view(-1, self.feat_dim * 2) | ||
|
||
score = self.regressor(f_combined) | ||
score = self._scale_score(score) | ||
|
||
return score | ||
|
||
def _preprocess(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | ||
""" | ||
Downsample the input image with a factor of 2 and normalize the original and downsampled images. | ||
""" | ||
x_ds = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False) | ||
x = (x - self.default_mean.to(x)) / self.default_std.to(x) | ||
x_ds = (x_ds - self.default_mean.to(x_ds)) / self.default_std.to(x_ds) | ||
return x, x_ds | ||
|
||
def _scale_score(self, score: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Scale the score in the range [0, 1], where higher is better. | ||
""" | ||
new_range = (0., 1.) | ||
|
||
# Compute scaling factors | ||
original_range = ( | ||
available_datasets_ranges[self.regressor_dataset][0], available_datasets_ranges[self.regressor_dataset][1]) | ||
original_width = original_range[1] - original_range[0] | ||
new_width = new_range[1] - new_range[0] | ||
scaling_factor = new_width / original_width | ||
|
||
# Scale score | ||
scaled_score = new_range[0] + (score - original_range[0]) * scaling_factor | ||
|
||
# Invert the scale if needed | ||
if available_datasets_mos_types[self.regressor_dataset] == "dmos": | ||
scaled_score = new_range[1] - scaled_score | ||
|
||
return scaled_score |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters