Genetic Algorithm Library in JS
A genetic algorithm is more or less a universal function approximator. After an initial (usually randomized) population is created, the algorithm loops through the following processes:
- Fitness - Assessing how well an indiviual performs.
- Crossover ( reproduction ) - The fittest individuals have a higher probability to pass on DNA.
- Mutation - Random mutations supply the necessary entropy to navigate the search space.
Such that the population evolves towards some optimal solution.
Include Jenetics.js or Jenetics.min.js from dist
<script src="path/to/JeneticS.js"></script>
<script src="path/to/your/app.js"></script>
Node specific usage coming soon.
Define a live (fitness) and mutate functions for your Agent.
let evolve = "A string to evolve."; // Trivial example
Agent.prototype.live = function () { // Example: Live function
for (let i = 0; i < this.dna.length; i++) {
if (this.dna[i] === evolve[i]) {
this.score++;
}
}
};
Agent.prototype.mutate = function (rate) { // Example: Mutate function
for (let i = 0; i < this.dna.length; i++) {
if (Math.random() < rate) {
// MUTATE DNA
}
}
// OR
if (Math.random() < rate) {
// MUTATE AGENT
}
};
Create a function to define random Agents
function createAgent(index) {
// Create an agent
let agent = new Agent();
agent.dna = [/* Populate according to your needs */]
return agent;
}
Create a Genetic Algorithm instance and innoculate the culture:
let geneticAlgorithm = new JeneticS();
geneticAlgorithm.innoculate(createAgent); // Pass in a function to create a random Agent
Simulate a generation
geneticAlgorithm.run().generation();
Access the fittest individual, the entire population, or by index.
best = geneticAlgorithm.culture.best;
allIndividuals = geneticAlgorithm.culture.citizens;
let i = 2;
byIndex = geneticAlgorithm.culture.citizen(i);
let geneticAlgorithm = new JeneticS({
mutationRate: 0.01, // Rate of mutation
population: 500, // Population of Agents in Culture
crossoverMethod: "all", // "all" "half" "alternate"
elitism: 0.1, // Percentage of additional mutated elites
eliteMutationMultiplier: 5 // Multiplier for elite mutation rate
});
- Add more examples
- TSP
- Add continuous evolution mode
- Neuro Evolution: Tensorflow.js integration