Skip to content

OpenClassrooms Projet 8 : Déployer un modèle dans le cloud

Notifications You must be signed in to change notification settings

carlgennetais/p8_cloud

Repository files navigation

P8_cloud

OpenClassrooms Projet 8 : Déployer un modèle dans le cloud

Description

Project briefing from OpenClassrooms Une startup de l'AgriTech souhaite développer une application mobile de classification de fruits par reconnaissance d'image, avant de l'implémenter dans un robot cueilleur.

Mission : mettre en place une architecture Big Data sur le cloud pour traiter les données de l'application mobile

  • calcul distribué avec Spark
  • cloud AWS dans le respect des normes RGPD
  • diffusion des poids du modèle TensorFlow
  • réduction de dimension PCA
  • sans entrainer modèle

Data

Install

  • Create a new cluster in AWS EMR with the following configuration:
    • pre-install apps : Hadoop, Spark, Jupyter, TensorFlow
    • bootstrap.sh to install requirements
    • cluster_apps_config.json to use S3 bucket as persistent storage in Jupyter
    • private aws ssh keys

Makefile

Available rules:
clean               Delete all compiled Python files
clean_code          Clean notebooks and python fils with black and isort
create_environment  Set up python interpreter environment
data                Make Dataset : download and unzip dataset from Kaggle
lint                Lint using flake8
requirements        Install Python Dependencies

Project Organization

├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- This file
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

About

OpenClassrooms Projet 8 : Déployer un modèle dans le cloud

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages