Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

check for is_string_dtype and unsupported mixed type #335

Merged
merged 2 commits into from
Oct 9, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion datacompy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
Then extended to carry that functionality over to Spark Dataframes.
"""

__version__ = "0.13.3"
__version__ = "0.14.0"

import platform
from warnings import warn
Expand Down
22 changes: 18 additions & 4 deletions datacompy/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -770,6 +770,11 @@ def columns_equal(
- Non-numeric values (i.e. where np.isclose can't be used) will just
trigger True on two nulls or exact matches.

Notes
-----
As of version ``0.14.0`` If a column is of a mixed data type the compare will
default to returning ``False``.

Parameters
----------
col_1 : Pandas.Series
Expand All @@ -792,6 +797,15 @@ def columns_equal(
values don't match.
"""
compare: pd.Series[bool]

# short circuit if comparing mixed type columns. We don't want to support this moving forward.
if pd.api.types.infer_dtype(col_1).startswith("mixed") or pd.api.types.infer_dtype(
col_1
).startswith("mixed"):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this supposed to be pd.api.types.infer_dtype(col_2).startswith("mixed") instead for the second clause?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ahh yes. typo!

compare = pd.Series(False, index=col_1.index)
compare.index = col_1.index
return compare

try:
compare = pd.Series(
np.isclose(col_1, col_2, rtol=rel_tol, atol=abs_tol, equal_nan=True)
Expand All @@ -810,15 +824,15 @@ def columns_equal(
except (ValueError, TypeError):
try:
if ignore_spaces:
if col_1.dtype.kind == "O":
if col_1.dtype.kind == "O" and pd.api.types.is_string_dtype(col_1):
col_1 = col_1.str.strip()
if col_2.dtype.kind == "O":
if col_2.dtype.kind == "O" and pd.api.types.is_string_dtype(col_2):
col_2 = col_2.str.strip()

if ignore_case:
if col_1.dtype.kind == "O":
if col_1.dtype.kind == "O" and pd.api.types.is_string_dtype(col_1):
col_1 = col_1.str.upper()
if col_2.dtype.kind == "O":
if col_2.dtype.kind == "O" and pd.api.types.is_string_dtype(col_2):
col_2 = col_2.str.upper()

if {col_1.dtype.kind, col_2.dtype.kind} == {"M", "O"}:
Expand Down
38 changes: 19 additions & 19 deletions tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def test_string_columns_equal_with_ignore_spaces():
something||False
|something|False
||True"""
df = pd.read_csv(io.StringIO(data), sep="|")
df = pd.read_csv(io.StringIO(data), sep="|", keep_default_na=False)
actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True)
expect_out = df["expected"]
assert_series_equal(expect_out, actual_out, check_names=False)
Expand All @@ -119,7 +119,7 @@ def test_string_columns_equal_with_ignore_spaces_and_case():
something||False
|something|False
||True"""
df = pd.read_csv(io.StringIO(data), sep="|")
df = pd.read_csv(io.StringIO(data), sep="|", keep_default_na=False)
actual_out = datacompy.columns_equal(
df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True
)
Expand Down Expand Up @@ -160,7 +160,7 @@ def test_date_columns_equal_with_ignore_spaces():
2017-01-01||False
|2017-01-01|False
||True"""
df = pd.read_csv(io.StringIO(data), sep="|")
df = pd.read_csv(io.StringIO(data), sep="|", keep_default_na=False)
# First compare just the strings
actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True)
expect_out = df["expected"]
Expand Down Expand Up @@ -192,7 +192,7 @@ def test_date_columns_equal_with_ignore_spaces_and_case():
2017-01-01||False
|2017-01-01|False
||True"""
df = pd.read_csv(io.StringIO(data), sep="|")
df = pd.read_csv(io.StringIO(data), sep="|", keep_default_na=False)
# First compare just the strings
actual_out = datacompy.columns_equal(
df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True
Expand Down Expand Up @@ -364,10 +364,10 @@ def test_infinity_and_beyond():
def test_mixed_column():
df = pd.DataFrame(
[
{"a": "hi", "b": "hi", "expected": True},
{"a": 1, "b": 1, "expected": True},
{"a": np.inf, "b": np.inf, "expected": True},
{"a": Decimal("1"), "b": Decimal("1"), "expected": True},
{"a": "hi", "b": "hi", "expected": False},
{"a": 1, "b": 1, "expected": False},
{"a": np.inf, "b": np.inf, "expected": False},
{"a": Decimal("1"), "b": Decimal("1"), "expected": False},
{"a": 1, "b": "1", "expected": False},
{"a": 1, "b": "yo", "expected": False},
]
Expand All @@ -380,10 +380,10 @@ def test_mixed_column():
def test_mixed_column_with_ignore_spaces():
df = pd.DataFrame(
[
{"a": "hi", "b": "hi ", "expected": True},
{"a": 1, "b": 1, "expected": True},
{"a": np.inf, "b": np.inf, "expected": True},
{"a": Decimal("1"), "b": Decimal("1"), "expected": True},
{"a": "hi", "b": "hi ", "expected": False},
{"a": 1, "b": 1, "expected": False},
{"a": np.inf, "b": np.inf, "expected": False},
{"a": Decimal("1"), "b": Decimal("1"), "expected": False},
{"a": 1, "b": "1 ", "expected": False},
{"a": 1, "b": "yo ", "expected": False},
]
Expand All @@ -396,15 +396,15 @@ def test_mixed_column_with_ignore_spaces():
def test_mixed_column_with_ignore_spaces_and_case():
df = pd.DataFrame(
[
{"a": "hi", "b": "hi ", "expected": True},
{"a": 1, "b": 1, "expected": True},
{"a": np.inf, "b": np.inf, "expected": True},
{"a": Decimal("1"), "b": Decimal("1"), "expected": True},
{"a": "hi", "b": "hi ", "expected": False},
{"a": 1, "b": 1, "expected": False},
{"a": np.inf, "b": np.inf, "expected": False},
{"a": Decimal("1"), "b": Decimal("1"), "expected": False},
{"a": 1, "b": "1 ", "expected": False},
{"a": 1, "b": "yo ", "expected": False},
{"a": "Hi", "b": "hI ", "expected": True},
{"a": "HI", "b": "HI ", "expected": True},
{"a": "hi", "b": "hi ", "expected": True},
{"a": "Hi", "b": "hI ", "expected": False},
{"a": "HI", "b": "HI ", "expected": False},
{"a": "hi", "b": "hi ", "expected": False},
]
)
actual_out = datacompy.columns_equal(
Expand Down
Loading