Skip to content

Commit

Permalink
feat: Integrate Persona Hub Techniques into CAMEL for Enhanced Agent …
Browse files Browse the repository at this point in the history
…Diversity (#716)

Co-authored-by: Zheng-Lu <[email protected]>
Co-authored-by: Wendong-Fan <[email protected]>
Co-authored-by: Harry-QY <[email protected]>
Co-authored-by: Harry Ye <[email protected]>
Co-authored-by: Wendong <[email protected]>
  • Loading branch information
6 people authored Nov 14, 2024
1 parent c7e726f commit 5d62942
Show file tree
Hide file tree
Showing 9 changed files with 765 additions and 15 deletions.
17 changes: 17 additions & 0 deletions camel/personas/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
from .persona import Persona
from .persona_hub import PersonaHub

__all__ = ['Persona', 'PersonaHub']
86 changes: 86 additions & 0 deletions camel/personas/persona.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import uuid
from typing import ClassVar, Optional, Union

from pydantic import BaseModel, ConfigDict, Field, PrivateAttr

from camel.prompts import PersonaHubPrompt, TextPrompt


class Persona(BaseModel):
r"""A persona is a character in the society.
Attributes:
name (Optional[str]): Name of the persona.
description (Optional[str]): Description of the persona.
t2p_prompt (Union[TextPrompt, str]): Text to Persona Prompt.
p2p_prompt (Union[TextPrompt, str]): Persona to Persona Prompt.
id (uuid.UUID): The unique identifier for the persona, automatically
generated.
"""

name: Optional[str] = None
description: Optional[str] = None
_id: uuid.UUID = PrivateAttr(default_factory=uuid.uuid4)

# Field with default_factory to avoid circular import issues
# Union type allows either TextPrompt or str
t2p_prompt: Union[TextPrompt, str] = Field(
default_factory=lambda: PersonaHubPrompt.TEXT_TO_PERSONA,
description="Text to Persona Prompt",
)

# Similar to t2p_prompt, using default_factory for lazy evaluation
p2p_prompt: Union[TextPrompt, str] = Field(
default_factory=lambda: PersonaHubPrompt.PERSONA_TO_PERSONA,
description="Persona to Persona Prompt",
)

# Class-level configuration for Pydantic model
# ClassVar indicates this is a class variable, not an instance variable
model_config: ClassVar[ConfigDict] = ConfigDict(
# Allow the use of custom types TextPrompt
arbitrary_types_allowed=True,
# Custom JSON schema configuration
json_schema_extra={
"properties": {
# Ensure t2p_prompt and p2p_prompt are treated as strings in
# JSON schema
"t2p_prompt": {"type": "string"},
"p2p_prompt": {"type": "string"},
}
},
)

@property
def id(self) -> uuid.UUID:
return self._id

@classmethod
def model_json_schema(cls):
schema = super().schema()
schema['properties']['id'] = {'type': 'string', 'format': 'uuid'}
return schema

def dict(self, *args, **kwargs):
# Output: {'name': 'Alice', 'description': None, 't2p_prompt': '...', 'p2p_prompt': '...', 'id': 'f47ac10b-58cc-4372-a567-0e02b2c3d479'} # noqa: E501
d = super().model_dump(*args, **kwargs)
d['id'] = str(self.id)
return d

def json(self, *args, **kwargs):
# Output: '{"name": "Alice", "description": null, "t2p_prompt": "...", "p2p_prompt": "...", "id": "f47ac10b-58cc-4372-a567-0e02b2c3d479"}' # noqa: E501
d = self.dict(*args, **kwargs)
return super().json(d, *args, **kwargs)
283 changes: 283 additions & 0 deletions camel/personas/persona_hub.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import ast
import re
import uuid
from functools import lru_cache
from typing import Dict, List, Literal, Optional, Union

import numpy as np
from pydantic import BaseModel, Field

from camel.agents import ChatAgent
from camel.embeddings import BaseEmbedding
from camel.models import BaseModelBackend
from camel.personas import Persona
from camel.prompts import TextPrompt


# Set structured output schema
class PersonaResponse(BaseModel):
persona_name: str = Field(description="The name of the persona")
persona_description: str = Field(
description="The description of the persona"
)


class PersonaHub:
r"""PersonaHub proposes a novel persona-driven data synthesis methodology
that leverages various perspectives within a large language model (LLM) to
create diverse synthetic data. By showcasing PersonaHub's use cases in
synthesizing high-quality mathematical and logical reasoning problems,
instructions (i.e., user prompts), knowledge-rich texts, game NPCs and
tools (functions) at scale, the authors demonstrate persona-driven data
synthesis is versatile, scalable, flexible, and easy to use, potentially
driving a paradigm shift in synthetic data creation and applications in
practice, which may have a profound impact on LLM research and development.
Please refer to the paper for more details: https://arxiv.org/pdf/2406.20094
Args:
model (BaseModelBackend, optional): The model to use for persona
generation and manipulation. (default: :obj:`None`)
"""

def __init__(
self,
model: Optional[BaseModelBackend] = None,
):
self.model = model
self.personas: Dict[uuid.UUID, Persona] = {}

def __setitem__(self, persona: Persona):
r"""Add a persona to the group.
Args:
persona (Persona): The persona to add.
"""
self.personas[persona.id] = persona

def __delitem__(self, persona_id: uuid.UUID):
r"""Remove a persona from the group by ID.
Args:
persona_id (uuid.UUID): The ID of the persona to remove.
"""
if persona_id in self.personas:
del self.personas[persona_id]
else:
raise KeyError("Persona ID not found")

def __getitem__(self, persona_id: uuid.UUID) -> Persona:
r"""Get a persona by ID.
Args:
persona_id (uuid.UUID): The ID of the persona to retrieve.
"""
if persona_id in self.personas:
return self.personas[persona_id]
else:
raise KeyError("Persona ID not found")

def text_to_persona(
self,
text: str,
action: Literal["read", "write", "like", "dislike"] = "read",
) -> Persona:
r"""Infers a specific persona who is likely to [read|write|like|dislike
|...] the given text.
Args:
text (str): The input text for which to infer a persona.
action (str): The action associated with the persona (default is
"read").
Returns:
Persona: The inferred persona.
"""
persona = Persona()

t2p_prompt: Union[TextPrompt, str] = persona.t2p_prompt
t2p_prompt_instruction = t2p_prompt.format(action=action, text=text)

# Set Agent to generate personal
t2p_agent = ChatAgent(
system_message="You are a helpful assistant", model=self.model
)
t2p_agent.reset()

# Get output from agent
try:
response = t2p_agent.step(
t2p_prompt_instruction,
response_format=PersonaResponse, # type: ignore[arg-type]
)
parsed_content = ast.literal_eval(response.msg.content)
persona.name = parsed_content["persona_name"]
persona.description = parsed_content["persona_description"]
except Exception as e:
raise RuntimeError(f"Text to persona step failed: {e}")

return persona

def persona_to_persona(self, persona: Persona) -> Dict[uuid.UUID, Persona]:
r"""Derives additional personas based on interpersonal relationships
from this persona.
Args:
persona (Persona): The persona from which to derive related
personas.
Returns:
Dict[uuid.UUID, Persona]: A dictionary of related personas.
"""
p2p_prompt: Union[TextPrompt, str] = persona.p2p_prompt
answer_template = """
You MUST answer the question according to the format of the ANSWER TEMPLATE, and you can only modify the content within <BLANK>.
===== ANSWER TEMPLATE =====
1. persona_name: <BLANK>
persona_description: <BLANK>
...
n. persona_name: <BLANK>
persona_description: <BLANK>
""" # noqa: E501
p2p_prompt_instruction = (
p2p_prompt.format(
persona_name=persona.name,
persona_description=persona.description,
)
+ answer_template
)

p2p_agent = ChatAgent(
system_message="You're a helpful assistant.", model=self.model
)
p2p_agent.reset()

# Get output from agent
try:
response = p2p_agent.step(
p2p_prompt_instruction # type: ignore[arg-type]
)
# Structured output (TODO: Use a more robust parser)
pattern = r"(\d+)\.\s*persona_name:\s*(.*?)\s*persona_description:\s*(.*?)\s*(?=\d+\.|$)" # noqa: E501
matches = re.findall(pattern, response.msg.content, re.DOTALL)

personas: Dict[uuid.UUID, Persona] = {}
for match in matches:
name = match[1].strip()
description = match[2].strip()
new_persona = Persona(name=name, description=description)
personas[new_persona.id] = new_persona
except Exception as e:
raise RuntimeError(f"Persona to persona step failed: {e}")

return personas

def deduplicate(
self,
embedding_model: Optional[BaseEmbedding] = None,
similarity_threshold: float = 0.85,
) -> None:
r"""Remove similar personas from the group.
Args:
embedding_model (BaseEmbedding): The embedding model
for similarity compairsion. (default is `None`).
similarity_threshold (float): The similarity threshold for
deduplication (default is `0.85`).
"""
# Changed to default similarity threshold to 0.85 as the default
# text-embedding-3-small model may give lower similarities than others
# This is a simplified version. Need to implement a more
# sophisticated deduplication algorithm as described in the paper.
if not embedding_model:
from camel.embeddings import OpenAIEmbedding

embedding_model = OpenAIEmbedding()
unique_personas: Dict[uuid.UUID, Persona] = {}
for persona_id, persona in self.personas.items():
if not any(
self._is_similar(
persona, up, similarity_threshold, embedding_model
)
for up in unique_personas.values()
):
unique_personas[persona_id] = persona
self.personas = unique_personas

@staticmethod
@lru_cache(maxsize=128)
def _get_embedding(
embedding_model: BaseEmbedding, description: Optional[str]
) -> list[float]:
r"""Cache embeddings to reduce recomputation."""
return embedding_model.embed(description)

@staticmethod
def _cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
r"""Copmute the cosine similarity of two vectors.
Args:
vec1 (np.ndarray): Vector 1
vec2 (np.ndarray): Vector 2
"""
return np.dot(vec1, vec2) / (
np.linalg.norm(vec1) * np.linalg.norm(vec2)
)

def _is_similar(
self,
persona1: Persona,
persona2: Persona,
similarity_threshold: float,
embedding_model: BaseEmbedding,
) -> bool:
r"""Check if two personas are similar by consine similarity
of the embeddings of their descriptions.
Args:
persona1 (Persona1): A persona.
persona2 (Persona2): The other persona.
similarity_threshold (float): The threshold on consine similarity
to determine whether the two personas are similar.
embedding_model (BaseEmbedding): The embedding model
for similarity compairsion.
"""

# Ensure persona descriptions are not None
persona1_description = persona1.description or ""
persona2_description = persona2.description or ""

persona1_embeddings = self._get_embedding(
embedding_model, persona1_description
)
persona2_embeddings = self._get_embedding(
embedding_model, persona2_description
)

similarity = self._cosine_similarity(
np.array(persona1_embeddings), np.array(persona2_embeddings)
)

return similarity >= similarity_threshold

def __len__(self):
return len(self.personas)

def __iter__(self):
return iter(self.personas.values())

def get_all_personas(self) -> List[Persona]:
r"""Return a list of all personas."""
return list(self.personas.values())
Loading

0 comments on commit 5d62942

Please sign in to comment.