Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
{
"id": "ai-culinary-innovation-studio",
"title": "AI Culinary Innovation Studio",
"description": "Revolutionary kitchen laboratory that creates novel recipes by fusing global cuisines, analyzes nutritional profiles, generates professional cooking techniques, and designs stunning food presentations for culinary innovation.",
"category": "Culinary & Nutrition",
"job": "culinary-innovation",
"example_prompt": "Create a fusion dish combining Japanese ramen with Mexican mole sauce. Include 4-6 servings, detailed nutritional analysis, step-by-step cooking instructions, and presentation suggestions. Ensure the recipe balances umami, spice, and texture.",
"example_result": "Culinary Innovation Complete!\n\n## 🌶️ Fusion Creation: Ramen-Mole Rhapsody\n\n### 1. Ingredient Fusion Research (Computer Controller Extension)\n\n**Global Ingredient Analysis:**\n- **Japanese Base**: Tonkotsu broth, fresh ramen noodles, nori, green onions\n- **Mexican Fusion**: Mole sauce components (chocolate, chili peppers, nuts, spices)\n- **Bridge Elements**: Sesame seeds, lime, cilantro for flavor harmony\n\n**Sourced Recipes:**\n- Authentic tonkotsu ramen from 15 Japanese sources\n- Traditional mole poblano from 8 Mexican culinary databases\n- Nutritional data from USDA and international food composition tables\n\n### 2. Nutritional Engineering (Developer Extension)\n\n**Macronutrient Balance Calculation:**\n```python\n# Nutritional optimization algorithm\ntarget_profile = {\n 'protein': 25-30g per serving,\n 'carbs': 45-55g per serving,\n 'fat': 15-20g per serving,\n 'fiber': 8-12g per serving\n}\n\ndef optimize_recipe(ingredients, servings=4):\n total_nutrition = calculate_total_nutrition(ingredients)\n per_serving = total_nutrition / servings\n \n # Adjust ratios for balance\n if per_serving['protein'] < 25:\n add_protein_sources()\n if per_serving['fiber'] < 8:\n add_fiber_elements()\n \n return optimized_recipe\n```\n\n**Per Serving Nutrition (4 servings):**\n- Calories: 485 kcal\n- Protein: 28g (23%)\n- Carbohydrates: 52g (43%)\n- Fat: 18g (34%)\n- Fiber: 9.2g\n- Sodium: 1,240mg\n- Key Micronutrients: Iron 4.2mg, Vitamin C 45mg, Calcium 180mg\n\n### 3. Culinary Visualization (Auto Visualiser Extension)\n\n**Generated Assets:**\n- Ingredient fusion diagram showing flavor profiles\n- Step-by-step cooking timeline visualization\n- Nutritional breakdown pie chart\n- Final dish presentation mockup\n- Flavor wheel analysis (umami, sweet, spicy, sour balance)\n\n**Presentation Design:**\n- Layered bowl composition with broth base\n- Mole-infused noodles draped elegantly\n- Garnish constellation of sesame, nori, and lime\n- Color palette: Deep mahogany broth, vibrant green accents\n\n### 4. Recipe Memory Bank (Memory Extension)\n\n**Stored Innovation Data:**\n- Complete recipe with variations indexed\n- Nutritional profiles cached for similar fusions\n- Cooking technique preferences saved\n- Flavor combinations cataloged for future reference\n\n**Recipe Evolution Tracking:**\n- Version 1.0: Initial fusion\n- Version 1.1: Nutritional optimization\n- Version 1.2: Presentation refinement\n\n## 📋 Complete Recipe: Ramen-Mole Rhapsody\n\n### Ingredients (4 servings)\n**Broth Base:**\n- 2 cups tonkotsu-style pork broth\n- 1 cup mole sauce (store-bought or homemade)\n- 2 tbsp miso paste\n- 1 tbsp sesame oil\n\n**Proteins:**\n- 12 oz fresh ramen noodles\n- 8 oz pork belly, thinly sliced\n- 4 soft-boiled eggs\n\n**Vegetables & Aromatics:**\n- 4 green onions, finely sliced\n- 2 sheets nori, cut into strips\n- 1 lime, quartered\n- Fresh cilantro, chopped\n\n**Fusion Spices:**\n- 1 tsp cumin\n- 1 tsp coriander\n- ½ tsp cinnamon\n- 2 dried ancho chiles\n\n### Cooking Instructions\n\n**Phase 1: Broth Fusion (25 minutes)**\n1. Heat tonkotsu broth to simmer\n2. Whisk in mole sauce gradually\n3. Add miso paste and sesame oil\n4. Infuse with fusion spices\n5. Simmer 20 minutes for flavor marriage\n\n**Phase 2: Protein Preparation (15 minutes)**\n1. Cook pork belly until crispy\n2. Soft-boil eggs (6 minutes)\n3. Prepare ramen noodles al dente\n\n**Phase 3: Assembly (5 minutes)**\n1. Divide noodles into bowls\n2. Pour hot fusion broth over noodles\n3. Top with pork belly and halved eggs\n4. Garnish with green onions, nori, and cilantro\n5. Serve with lime wedges\n\n### Flavor Profile Analysis\n- **Umami Depth**: Mole's chocolate + miso + pork = 9/10\n- **Spice Balance**: Ancho chiles + cumin provide gentle heat\n- **Texture Harmony**: Crispy pork, tender noodles, rich broth\n- **Cultural Fusion**: Japanese precision meets Mexican passion\n\n### Presentation Tips\n- Serve in deep bowls for broth immersion\n- Create height with egg positioning\n- Use contrasting colors for visual appeal\n- Add edible flowers for elegance\n\n## Innovation Metrics\n\n✅ **Novelty Score**: 8.5/10 (unique flavor combination)\n✅ **Nutritional Balance**: Optimized macronutrients\n✅ **Cultural Fusion**: Japanese-Mexican synthesis\n✅ **Scalability**: Adaptable for restaurant or home\n✅ **Sustainability**: Uses accessible, seasonal ingredients\n\n## Next Culinary Experiments\n\n1. **Variation Ideas**:\n - Vegan version with mushroom broth\n - Seafood fusion with mole-marinated shrimp\n - Spicy level adjustments\n\n2. **Scaling Options**:\n - Restaurant portion (increase by 3x)\n - Meal prep version (batch cooking)\n - Dietary adaptations (keto, gluten-free)\n\n3. **Advanced Techniques**:\n - Molecular gastronomy elements\n - Fermentation integration\n - International spice substitutions\n\nWould you like me to:\n- Create another fusion recipe?\n- Analyze nutritional variations?\n- Generate a restaurant menu?\n- Design plating photography?",
"extensions": [
{
"name": "Computer Controller",
"description": "Researches global recipes, nutritional databases, and culinary techniques from international sources.",
"is_builtin": true,
"environmentVariables": []
},
{
"name": "Developer",
"description": "Performs nutritional calculations, recipe scaling algorithms, and flavor profile optimization.",
"is_builtin": true,
"environmentVariables": []
},
{
"name": "Auto Visualiser",
"description": "Creates recipe visualizations, nutritional charts, and food presentation designs.",
"is_builtin": true,
"environmentVariables": []
},
{
"name": "Memory",
"description": "Stores innovative recipes, nutritional data, and culinary experiments for future reference and iteration.",
"is_builtin": true,
"environmentVariables": []
}
]
}