Skip to content

Commit

Permalink
rewrite the definitions of groups in symmetry.jl (#32)
Browse files Browse the repository at this point in the history
* rewrite the definitions of groups in symmetry.jl

* add Random
  • Loading branch information
Marek Kaluba authored Sep 14, 2023
1 parent 7fed6ef commit 34c691d
Show file tree
Hide file tree
Showing 2 changed files with 165 additions and 137 deletions.
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ GroupsCore = "d5909c97-4eac-4ecc-a3dc-fdd0858a4120"
MultivariatePolynomials = "102ac46a-7ee4-5c85-9060-abc95bfdeaa3"
MutableArithmetics = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
PermutationGroups = "8bc5a954-2dfc-11e9-10e6-cd969bffa420"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
SumOfSquares = "4b9e565b-77fc-50a5-a571-1244f986bda1"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Expand Down
301 changes: 164 additions & 137 deletions src/symmetry.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,17 @@
using SumOfSquares
import Random
using GroupsCore

using PermutationGroups
symmetric_group(n) = PermutationGroups.PermGroup(PermutationGroups.Perm([2,1]), PermutationGroups.Perm([2:n;1]))
const G3 = symmetric_group(3)
const P3 = collect(G3)
function __symmetric_grp_gens(n::Integer)
return (Perm(UInt16[2, 1], false), Perm(UInt16[2:n; 1], false))
end
symmetric_group(n::Integer) = PermGroup(__symmetric_grp_gens(n)...)

export Lattice1Group

## Klein C₂⊕C₂ group
struct KleinGroup <: Group end
"""
struct KleinElement <: GroupElement
id::Int
Expand All @@ -22,9 +26,17 @@ form a the Klein group.
struct KleinElement <: GroupElement
id::Int
end
Base.:(==)(a::KleinElement, b::KleinElement) = a.id == b.id

PermutationGroups.order(el::KleinElement) = iszero(el.id) ? 1 : 2
GroupsCore.gens(::KleinGroup) = [KleinElement(1), KleinElement(2)]
GroupsCore.order(::Type{T}, G::KleinGroup) where {T} = convert(T, 4)
Base.IteratorSize(::Type{KleinGroup}) = Base.HasLength()
Base.eltype(::Type{KleinGroup}) = KleinElement
Base.iterate(::KleinGroup, st=0) = ifelse(st 4, nothing, (KleinElement(st), st + 1))
Base.one(::KleinGroup) = KleinElement(0)

Base.parent(::KleinElement) = KleinGroup()
GroupsCore.order(::Type{T}, el::KleinElement) where {T} = convert(T, ifelse(iszero(el.id), 1, 2))
Base.:(==)(a::KleinElement, b::KleinElement) = a.id == b.id
Base.inv(el::KleinElement) = el

function Base.:*(a::KleinElement, b::KleinElement)
Expand All @@ -36,40 +48,52 @@ function Base.:*(a::KleinElement, b::KleinElement)
return KleinElement(2)
end

Base.conj(a::KleinElement, b::KleinElement) = inv(b) * a * b
Base.:^(a::KleinElement, b::KleinElement) = conj(a, b)

struct KleinGroup <: Group end
Base.one(::Union{KleinGroup, KleinElement}) = KleinElement(0)
PermutationGroups.gens(::KleinGroup) = [KleinElement(1), KleinElement(2)]
PermutationGroups.order(::Type{T}, G::KleinGroup) where {T} = convert(T, 4)
function Base.iterate(::KleinGroup, prev::KleinElement = KleinElement(-1))
id = prev.id + 1
if id > 4
return nothing
else
next = KleinElement(id)
return next, next
end
function Base.rand(rng::Random.AbstractRNG, st::Random.SamplerTrivial{KleinGroup})
klein = st[]
id = rand(rng, 1:order(Int, klein))
return KleinElement(id - 1)
end

#SymbolicWedderburn.conjugacy_classes_orbit(KleinGroup())

function perm_klein(k::KleinElement, p::PermutationGroups.Permutation)
if k.id == 0
return k
else
return KleinElement(k.id^p)
end
end
## PermKleinGroup, aka the semi-direct product of Klein and S₃ over ϕ,
# the homomorphism ϕ: S₃ → Aut(Klein) given by the permutation
# of the three non-trivial elements in Klein.
struct KleinPermGroup <: Group end

"""
Group element `k * p = p * k^inv(p)`.
"""
struct KleinPermElement <: GroupElement
p::eltype(P3)
p::PermutationGroups.Perm{UInt16}
k::KleinElement
end

function GroupsCore.gens(::KleinPermGroup)
Kid = one(KleinGroup())
return [KleinPermElement(g, Kid) for g in __symmetric_grp_gens(3)]
end
GroupsCore.order(::Type{T}, G::KleinPermGroup) where {T} = convert(T, 6 * 4)
Base.IteratorSize(::Type{KleinPermGroup}) = Base.HasShape{2}()
Base.size(::KleinPermGroup) = (6, 4)
Base.eltype(::Type{KleinPermGroup}) = KleinPermElement

function Base.iterate(::KleinPermGroup)
P3 = map(PermutationGroups.Perms.perm, symmetric_group(3))
IT = Iterators.product(P3, KleinGroup())
(p, k), st = iterate(IT)
return KleinPermElement(p, k), (IT, st)
end

function Base.iterate(::KleinPermGroup, it_st)
IT, st = it_st
el_st = iterate(IT, st)
isnothing(el_st) && return nothing
(p, k), st = el_st
return KleinPermElement(p, k), (IT, st)
end

Base.one(::KleinPermGroup) = KleinPermElement(one(Perm{UInt16}), one(KleinGroup()))

Base.parent(::KleinPermElement) = KleinPermGroup()
Base.isone(el::KleinPermElement) = isone(el.k) && isone(el.p)

function Base.hash(el::KleinPermElement, u::UInt64)
Expand All @@ -79,154 +103,157 @@ function Base.:(==)(a::KleinPermElement, b::KleinPermElement)
return a.p == b.p && a.k == b.k
end

function __klein_ϕ(k::KleinElement, p::PermutationGroups.AbstractPermutation)
return ifelse(k.id == 0, k, KleinElement(k.id^p))
end

# k^(inv(p)) * inv(p) * k * p = k^(inv(p)) * k * inv(p) * p = 1
function Base.inv(el::KleinPermElement)
inv_p = inv(el.p)
KleinPermElement(inv_p, perm_klein(el.k, inv_p))
KleinPermElement(inv_p, __klein_ϕ(el.k, inv_p))
end

# p * k * q * k' = p * q * k^p * k'
# k * p * k' * q = k * k'^p * p * q
function Base.:*(a::KleinPermElement, b::KleinPermElement)
return KleinPermElement(a.p * b.p, perm_klein(a.k, b.p) * b.k)
return KleinPermElement(a.p * b.p, __klein_ϕ(a.k, b.p) * b.k)
end
function Base.:^(el::KleinPermElement, k::Integer)
return Base.power_by_squaring(el, k)
end

Base.conj(a::KleinPermElement, b::KleinPermElement) = inv(b) * a * b
Base.:^(a::KleinPermElement, b::KleinPermElement) = conj(a, b)

function PermutationGroups.order(el::KleinPermElement)
cur = el
i = 1
while !isone(cur)
i += 1
cur *= el
end
return i
function Base.rand(rng::Random.AbstractRNG, ::Random.SamplerTrivial{KleinPermGroup})
p = Perm{UInt16}(Random.randperm(rng, 3), false)
k = rand(rng, KleinGroup())
return KleinPermElement(p, k)
end

struct KleinPermGroup <: Group end
Base.one(::Union{KleinPermGroup, KleinPermElement}) = KleinPermElement(one(G3), one(KleinGroup()))
# See https://github.com/blegat/CondensedMatterSOS.jl/pull/31#issuecomment-1717665659
function PermutationGroups.gens(g::KleinPermGroup)
els = [one(g)]
for g in gens(G3)
push!(els, KleinPermElement(g, one(KleinGroup())))
end
return els
end
PermutationGroups.order(::Type{T}, G::KleinPermGroup) where {T} = convert(T, 6 * 4)
const IT = Iterators.product(1:6, 0:3)
function Base.iterate(::KleinPermGroup, args...)
el_st = iterate(IT, args...)
if el_st === nothing
return nothing
function Base.deepcopy_internal(g::KleinPermElement, dict::IdDict)
p = if haskey(dict, objectid(g.p))
dict[objectid(g.p)]
else
el, st = el_st
return KleinPermElement(P3[el[1]], KleinElement(el[2])), st
Base.deepcopy_internal(g.p, dict)
end
return KleinPermElement(p, g.k)
end

# CyclicGroup
struct CyclicGroup <: Group
n::Int
end
struct CyclicElem <: GroupElement
n::Int
id::Int
end

GroupsCore.gens(c::CyclicGroup) = [CyclicElem(c.n, 1)]
GroupsCore.order(::Type{T}, c::CyclicGroup) where {T} = convert(T, c.n)
Base.IteratorSize(::Type{CyclicGroup}) = Base.HasLength()
Base.eltype(::Type{CyclicGroup}) = CyclicElem
Base.iterate(c::CyclicGroup, st=0) = ifelse(st c.n, nothing, (CyclicElem(c.n, st), st + 1))
Base.one(C::CyclicGroup) = CyclicElem(C.n, 0)

Base.parent(c::CyclicElem) = CyclicGroup(c.n)
GroupsCore.order(el::CyclicElem) = div(el.n, gcd(el.n, el.id))
Base.:(==)(a::CyclicElem, b::CyclicElem) = a.n == b.n && a.id == b.id
Base.inv(el::CyclicElem) = CyclicElem(el.n, (el.n - el.id) % el.n)

function Base.:*(a::CyclicElem, b::CyclicElem)
return CyclicElem(a.n, (a.id + b.id) % a.n)
end
Base.:*(a::CyclicElem, b::CyclicElem) = CyclicElem(a.n, (a.id + b.id) % a.n)
Base.:^(el::CyclicElem, k::Integer) = CyclicElem(el.n, (el.id * k) % el.n)

Base.conj(a::CyclicElem, b::CyclicElem) = inv(b) * a * b
Base.:^(a::CyclicElem, b::CyclicElem) = conj(a, b)

function PermutationGroups.order(el::CyclicElem)
return div(el.n, gcd(el.n, el.id))
function Base.rand(rng::Random.AbstractRNG, st::Random.SamplerTrivial{CyclicGroup})
C = st[]
id = rand(rng, 1:order(Int, C))
return CyclicElem(C.n, id - 1)
end

struct CyclicGroup <: Group
n::Int
# General direct sum of two groups
struct DirectSumGroup{G1<:Group,G2<:Group} <: Group
H::G1
K::G2
end
struct DirectSumElem{G1El<:GroupElement,G2El<:GroupElement} <: GroupElement
h::G1El
k::G2El
end
function GroupsCore.gens(G::DirectSumGroup)
elts = [DirectSumElem(h, one(G.K)) for h in gens(G.H)]
append!(elts, [DirectSumElem(one(G.H), k) for k in gens(G.K)])
return elts
end
Base.one(c::Union{CyclicGroup, CyclicElem}) = CyclicElem(c.n, 0)
PermutationGroups.gens(c::CyclicGroup) = [CyclicElem(c.n, 1)]
PermutationGroups.order(::Type{T}, c::CyclicGroup) where {T} = convert(T, c.n)
function Base.iterate(c::CyclicGroup, prev::CyclicElem=CyclicElem(c.n, -1))
id = prev.id + 1
if id >= c.n
return nothing
GroupsCore.order(::Type{T}, G::DirectSumGroup) where {T} =
convert(T, order(T, G.H) * order(T, G.K))

function Base.IteratorSize(::Type{DirectSumGroup{H,K}}) where {H,K}
if Base.IteratorSize(H) isa Base.IsInfinite || Base.IteratorSize(K) isa Base.IsInfinite
return Base.IsInfinite()
elseif Base.IteratorSize(H) isa Base.SizeUnknown || Base.IteratorSize(K) isa Base.SizeUnknown
return Base.SizeUnknown()
else
next = CyclicElem(c.n, id)
return next, next
return Base.HasShape{2}()
end
end

#SymbolicWedderburn.conjugacy_classes_orbit(KleinPermGroup())
Base.size(G::DirectSumGroup) = (order(Int, G.H), order(Int, G.K))

struct DirectSum <: GroupElement
c::CyclicElem
k::KleinPermElement
end
function PermutationGroups.order(el::DirectSum)
return lcm(PermutationGroups.order(el.c), PermutationGroups.order(el.k))
function Base.eltype(::Type{DirectSumGroup{H,K}}) where {H,K}
return DirectSumElem{eltype(H),eltype(K)}
end

function Base.hash(el::DirectSum, u::UInt64)
return hash(el.k, hash(el.c, u))
end
function Base.:(==)(a::DirectSum, b::DirectSum)
return a.c == b.c && a.k == b.k
function Base.iterate(G::DirectSumGroup)
IT = Iterators.product(G.H, G.K)
el, st = iterate(IT)
return DirectSumElem(el...), (IT, st)
end

function Base.inv(el::DirectSum)
DirectSum(inv(el.c), inv(el.k))
function Base.iterate(::DirectSumGroup, it_st)
el_st = iterate(it_st...)
isnothing(el_st) && return nothing
el, st = el_st
return DirectSumElem(el...), (first(it_st), st)
end

# k * p * k' * q = k * k'^p * p * q
function Base.:*(a::DirectSum, b::DirectSum)
return DirectSum(a.c * b.c, a.k * b.k)
end
Base.:^(a::DirectSum, k::Integer) = DirectSum(a.c^k, a.k^k)
Base.one(G::DirectSumGroup) = DirectSumElem(one(G.H), one(G.K))

Base.conj(a::DirectSum, b::DirectSum) = inv(b) * a * b
Base.:^(a::DirectSum, b::DirectSum) = conj(a, b)
Base.parent(g::DirectSumElem) = DirectSumGroup(parent(g.h), parent(g.k))
function GroupsCore.order(::Type{T}, g::DirectSumElem) where {T}
return convert(T, lcm(order(T, g.h), order(T, g.k)))
end
Base.:(==)(g1::DirectSumElem, g2::DirectSumElem) = g1.h == g2.h && g1.k == g2.k
Base.hash(el::DirectSumElem, h::UInt) = hash(el.h, hash(el.k, hash(eltype(el), h)))
Base.inv(g::DirectSumElem) = DirectSumElem(inv(g.h), inv(g.k))
Base.:*(g1::DirectSumElem, g2::DirectSumElem) = DirectSumElem(g1.h * g2.h, g1.k * g2.k)
Base.:^(g::DirectSumElem, n::Integer) = DirectSumElem(g.h^n, g.k^n)

struct Lattice1Group <: Group
n::Int
function Base.rand(rng::Random.AbstractRNG, st::Random.SamplerTrivial{<:DirectSumGroup})
G = st[]
h = rand(rng, G.H)
k = rand(rng, G.K)
return DirectSumElem(h, k)
end
Base.eltype(::Lattice1Group) = DirectSum
Base.one(el::DirectSum) = DirectSum(one(el.c), one(el.k))
Base.one(L::Lattice1Group) = DirectSum(CyclicElem(L.n, 0), one(KleinPermGroup()))
function PermutationGroups.gens(L::Lattice1Group)
els = DirectSum[]
for g in gens(CyclicGroup(L.n))
push!(els, DirectSum(g, one(KleinPermGroup())))
end
for g in gens(KleinPermGroup())
push!(els, DirectSum(one(CyclicGroup(L.n)), g))

function Base.deepcopy_internal(g::DirectSumElem, dict::IdDict)
h = if isbits(g.h)
g.h
elseif haskey(dict, objectid(g.h))
dict[objectid(g.h)]
else
Base.deepcopy_internal(g.h, dict)
end
return els
end
PermutationGroups.order(L::Lattice1Group) = PermutationGroups.order(Int, L)
function PermutationGroups.order(::Type{T}, L::Lattice1Group) where {T}
return order(T, CyclicGroup(L.n)) * order(T, KleinPermGroup())
end
Base.length(L::Lattice1Group) = PermutationGroups.order(L)
function Base.iterate(L::Lattice1Group)
el_p, st_p = iterate(CyclicGroup(L.n))
el_k, st_k = iterate(KleinPermGroup())
return DirectSum(el_p, el_k), ((el_p, st_p), st_k)
end
function Base.iterate(L::Lattice1Group, st)
el_st_k = iterate(KleinPermGroup(), st[2])
if el_st_k === nothing
el_st_p = iterate(CyclicGroup(L.n), st[1][2])
el_st_p === nothing && return nothing
el_k, st_k = iterate(KleinPermGroup())
return DirectSum(el_st_p[1], el_k), (el_st_p, st_k)

k = if isbits(g.k)
g.k
elseif haskey(dict, objectid(g.k))
dict[objectid(g.k)]
else
Base.deepcopy_internal(g.k, dict)
end
return DirectSum(st[1][1], el_st_k[1]), (st[1], el_st_k[2])
return DirectSumElem(h, k)
end

# two aliases
const Lattice1Group = DirectSumGroup{CyclicGroup,KleinPermGroup}
const DirectSum = DirectSumElem{CyclicElem,KleinPermElement}

"""
Lattice1Group(n::Integer)
The direct sum of the cyclic group of order `n` and `KleinPermGroup()`.
"""
(::Type{Lattice1Group})(n::Integer) = DirectSumGroup(CyclicGroup(n), KleinPermGroup())

0 comments on commit 34c691d

Please sign in to comment.