This is a repository summarizing the papers on the topic of Diffusion Models for Drug Design, and I also summarize the papers of ICML, ICLR, and NeurIPS.
- De Novo Drug Design
- Controllable Molecular generation
- Molecular Optimization For Drug Design
- Structure-based Drug Design
- Drug-likeness and Evaluation metrics
- Equivariant Diffusion for Molecule Generation in 3D (EDM)
Emiel Hoogeboom, Vı́ctor Garcia Satorras, Clément Vignac, Max Welling
[2203.17003] [ICML 2022] [Github] - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization (GCDM)
Alex Morehead, Jianlin Cheng
arXiv:2302.04313 (2023) - MDM: Molecular Diffusion Model for 3D Molecule Generation (MDM)
Lei Huang, Hengtong Zhang, Tingyang Xu, Ka-Chun Wong
AAAI 2023 - Geometric Latent Diffusion Models for 3D Molecule Generation (GeoLDM)
Minkai Xu, Alexander S Powers, Ron O. Dror, Stefano Ermon, Jure Leskovec
ICML 2023 - Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D [2023]
Qiang, Bo, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, and Yanyan Lan. ICML (2023) | code - Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation [2023] Huang, Han, Leilei Sun, Bowen Du, and Weifeng Lv.
arXiv:2301.00427 (2023) | code | AAAI 2023 - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation (JODO)
Han Huang, Leilei Sun, Bowen Du, Weifeng Lv
arXiv:2305.12347 (2023) - MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation (MiDi)
Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard
arXiv:2302.09048 (2023)
- Domain-Agnostic Molecular Generation with Self-feedback
[Paper] [Code][ICLR24] - SILVR: Guided Diffusion for Molecule Generation [2023]
Runcie, Nicholas T., and Antonia SJS Mey.
J. Chem. Inf. Model. (2023) | arXiv:2304.10905v1 | code - De Novo Molecule Generation with Graph Latent Diffusion Model [2024]
Wang, Conghao, Hiok Hian Ong, Shunsuke Chiba, and Jagath C. Rajapakse.
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2024)
- Structure-based Drug Design with Equivariant Diffusion Models
Arne Schneuing1, Yuanqi Du1, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell, Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein, Bruno Correia
arXiv:2210.13695 (2022) [Github] - 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction (TargetDiff)
Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, Jianzhu Ma
ICLR 2023 - KGDiff: towards explainable target-aware molecule generation with knowledge guidance [2023] Hao Qian, Wenjing Huang, Shikui Tu, Lei Xu.
Briefings in Bioinformatics. (2023) | code
-
Torsional Diffusion for Molecular Conformer Generation
Bowen Jing, Gabriele Corso, Regina Barzilay, Tommi S. Jaakkola*
ICLR Workshop 2022. [Paper] [Github] -
Predicting Molecular Conformation via Dynamic Graph Score Matching
Shitong Luo, Chence Shi, Minkai Xu, Jian Tang*
NeurIPS 2021. [Paper] -
GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation (GeoDiff)
Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang
ICLR 2022
How to control:
- Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models
Songtao Liu, Hanjun Dai, Yue Zhao, Peng Liu
ICML 2024 oral arXiv:2406.02066 | code - Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design
- (GeoLDM) Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu, Alexander S Powers, Ron O. Dror, Stefano Ermon, Jure Leskovec
ICML 2023 - (MUDM) Training-free Multi-objective Diffusion Model for 3D Molecule Generation
[Microsoft Research Asia, Microsoft Research AI4Science] Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, Dongsheng Li
ICLR 2024 poster - Retrieval-based Controllable Molecule Generation (RetMol)
Zichao Wang, Weili Nie, Zhuoran Qiao, Chaowei Xiao, Richard Baraniuk, Anima Anandkumar
ICLR-2023 | code - ControlMol: Adding Substruture Control To Molecule Diffusion Models
Qi Zhengyang, Liu Zijing, Zhang Jiying, Cao He, Li Yu
Arxiv-2405.06659 - Diffusion-Driven Domain Adaptation for Generating 3D Molecules
Authors: Haokai Hong, Wanyu Lin, Kay Chen Tan
arXiv:2404.00962 - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization
Xiangxin Zhou, Xiwei Cheng, Yuwei Yang, Yu Bao, Liang Wang, Quanquan Gu
arXiv:2403.13829 - Plug-And-Play Controllable Graph Generation With Diffusion Models
- A Property-Guided Diffusion Model For Generating Molecular Graphs [2024]
Ma, Changsheng, Taicheng Guo, Qiang Yang, Xiuying Chen, Xin Gao, Shangsong Liang, Nitesh Chawla, and Xiangliang Zhang.
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2024)
- Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation [2024]
Le, Tuan, Julian Cremer, Frank Noé, Djork-Arné Clevert, and Kristof Schütt.
International Conference on Learning Representations (ICLR). (2024) | code - Representing Molecules as Random Walks Over Interpretable Grammars
[ICML 2024 Spotlight] - Data-Efficient Molecular Generation with Hierarchical Textual Inversion
[ICML 2024 poster]
- Domain-Agnostic Molecular Generation with Chemical Feedback
ICML24
- Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks
ICML24
- Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules with Desirable Properties [2023]
Guo, Siyuan, Jihong Guan, and Shuigeng Zhou.
arXiv:2310.04463 (2023) - A dual diffusion model enables 3D binding bioactive molecule generation and lead optimization given target pockets [2023]
Huang, Lei.
bioRxiv 2023.01.28.526011 - A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets [2024]
Huang, L., Xu, T., Yu, Y. et al.
Nat Commun 15, 2657 (2024) | code - DiffSeqMol: A Non-Autoregressive Diffusion-Based Approach for Molecular Sequence Generation and Optimization [2023]
Zixu Wang, Yangyang Chen*, Xiucai Ye.
chemrxiv-2023-ltr9v-v2. (2023) | code
- ReBADD-SE: Multi-objective molecular optimization using SELFIES fragment and off-policy self-critical sequence training [2023]
Choi, Jonghwan, Sangmin Seo, Seungyeon Choi, Shengmin Piao, Chihyun Park, Sung Jin Ryu, Byung Ju Kim, and Sanghyun Park.
Computers in Biology and Medicine 157 (2023) | code - Autoregressive fragment-based diffusion for pocket-aware ligand design [2023]
Ghorbani, Mahdi, Leo Gendelev, Paul Beroza, and Michael Keiser.
NeurIPS 2023 Generative AI and Biology (GenBio) Workshop. (2023) | code
- DiffDec: Structure-Aware Scaffold Decoration with an End-to-End Diffusion [2023]
Xie, Junjie, Sheng Chen, Jinping Lei, and Yuedong Yang.
bioRxiv (2023) - DiffHopp: A Graph Diffusion Model for Novel Drug Design via Scaffold Hopping [2023]
Torge, Jos, Charles Harris, Simon V. Mathis, and Pietro Lió.
ICML(2023) | code
- A unified conditional diffusion framework for dual protein targets based bioactive molecule generation [2024]
Huang, Lei, Zheng Yuan, Huihui Yan, Rong Sheng, Linjing Liu, Fuzhou Wang, Weidun Xie et al.
IEEE Transactions on Artificial Intelligence (2024) | arXiv:2306.13957 (2023) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [2024]
Li, Xinze, Penglei Wang, Tianfan Fu, Wenhao Gao, Chengtao Li, Leilei Shi, and Junhong Liu.
arXiv:2404.02003 (2024) - MolSnapper: Conditioning Diffusion for Structure Based Drug Design [2024]
Ziv, Yael, Brian Marsden, and Charlotte Deane.
bioRxiv (2024) | code - A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets [2024]
Huang, L., Xu, T., Yu, Y. et al.
Nat Commun 15, 2657 (2024) | code - KGDiff: towards explainable target-aware molecule generation with knowledge guidance [2023]
Hao Qian, Wenjing Huang, Shikui Tu, Lei Xu.
Briefings in Bioinformatics. (2023) | code - Geometric Deep Learning for Structure-Based Ligand Design [2023]
Alexander S. Powers, Helen H. Yu, Patricia Suriana, Rohan V. Koodli, Tianyu Lu, Joseph M. Paggi, and Ron O. Dror.
ACS Cent. Sci. (2023) - Autoregressive fragment-based diffusion for pocket-aware ligand design [2023]
Ghorbani, Mahdi, Leo Gendelev, Paul Beroza, and Michael Keiser.
NeurIPS 2023 Generative AI and Biology (GenBio) Workshop. (2023) | code - DiffDTM: A conditional structure-free framework for bioactive molecules generation targeted for dual proteins [2023]
Huang, Lei, Zheng Yuan, Huihui Yan, Rong Sheng, Linjing Liu, Fuzhou Wang, Weidun Xie et al.
arXiv:2306.13957 (2023) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction [2023] Guan, Jiaqi, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma.
The Eleventh International Conference on Learning Representations. (2023) | code - Structure-based Drug Design with Equivariant Diffusion Models [2023]
Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov, I., Du, W., ... & Correia, B.
arXiv:2210.13695 (2022) | code - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [2023] Guan, Jiaqi, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang, and Quanquan Gu.
ICML (2023) | code - Binding-Adaptive Diffusion Models for Structure-Based Drug Design [2024] Zhilin Huang, Ling Yang, Zaixi Zhang, Xiangxin Zhou, Yu Bao, Xiawu Zheng, Yuwei Yang, Yu Wang, Wenming Yang. AAAI 2024 (2024) | code
- Shape-conditioned 3D Molecule Generation via Equivariant Diffusion Models [2023]
Chen, Ziqi, Bo Peng, Srinivasan Parthasarathy, and Xia Ning
arXiv:2308.11890 (2023)
Target-Agnostic Generation & Target-Aware Generation
quantitative estimation of drug-likeness
- Quantifying the chemical beauty of drugs [2012]
Bickerton, G., Paolini, G., Besnard, J. et al.
Nature Chem 4, 90–98 (2012) | code
Target-Aware Generation
Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions
J Cheminform 1, 8 (2009) | code
Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning
Chemical Science 12.9 (2021) | code
- Spacial Score – A Comprehensive Topological Indicator for Small Molecule Complexity [2023]
Krzyzanowski, Adrian, Axel Pahl, Michael Grigalunas, and Herbert Waldmann.
J. Med. Chem. (2023) | chemrxiv-2023-nd1ll | code - An automated scoring function to facilitate and standardize evaluation of goal-directedgenerative models for de novo molecular design [2023]
Thomas, Morgan, Noel M. O'Boyle, Andreas Bender, and Chris De Graaf.
chemrxiv-2023-c4867 | code - FCD : Fréchet ChemNet Distance
Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery
Preuer, Kristina, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
J. Chem. Inf. Model. 2018, 58, 9, 1736–1741 | code - Perplexity-Based Molecule Ranking and Bias Estimation of Chemical Language Models [2022]
Moret, M., Grisoni, F., Katzberger, P. and Schneider, G.
J. Chem. Inf. Model. 2022, 62, 5, 1199–1206 | code - AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (Vina AutoDock)
Oleg Trott, Arthur J. Olson
JCC 2010
- Equivariant Energy-Guided SDE for Inverse Molecular Design
Fan Bao1, Min Zhao1, Zhongkai Hao, Peiyao Li, Chongxuan Li, Jun Zhu
arXiv 2022. [Paper] - Inverse Molecular Design with Multi-Conditional Diffusion Guidance [2024] Liu, Gang, Jiaxin Xu, Tengfei Luo, and Meng Jiang. arXiv:2401.13858 (2024) | code
- STRIDE: Structure-guided Generation for Inverse Design of Molecules [2023]
Zaman, Shehtab, Denis Akhiyarov, Mauricio Araya-Polo, and Kenneth Chiu.
NeurIPS 2023 AI for Science Workshop. (2023) - Guided Diffusion for Inverse Molecular Design [2023]
Weiss, Tomer, Luca Cosmo, Eduardo Mayo Yanes, Sabyasachi Chakraborty, Alex M. Bronstein, and Renana Gershoni-Poranne.
Nat Comput Sci (2023) | chemrxiv-2023-z8ltp | code
- 3M-Diffusion: Latent Multi-Modal Diffusion for Text-Guided Generation of Molecular Graphs [2024]
Huaisheng Zhu, Teng Xiao, Vasant G Honavar.
arXiv:2403.07179. (2024) | code - Sculpting Molecules in Text-3D Space: A Flexible Substructure Aware Framework for Text-Oriented Molecular Optimization [2024]
Zhang, Kaiwei, Yange Lin, Guangcheng Wu, Yuxiang Ren, Xuecang Zhang, Bo Wang, and Xiao-Yu Zhang.
Research Square (2024) - Guided Diffusion for molecular generation with interaction prompt [2023]
Wu Song, Peng Wu, Huabin Du, Yingchao Yan, Chen Bai
bioRxiv (2023) | data
- Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design
Ilia Igashov, Hannes Stärk, Clément Vignac, Victor Garcia Satorras, Pascal Frossard, Max Welling, Michael Bronstein, Bruno Correia
arXiv 2022. [Paper] - Diffusion-based Molecule Generation with Informative Prior Bridges
Lemeng Wu1, Chengyue Gong1, Xingchao Liu, Mao Ye, Qiang Liu*
NeurIPS 2022. [Paper] - Diff-Shape: A Novel Constrained Diffusion Model for Shape based De Novo Drug Design [2024]
Lin, Jie, Mingyuan Xu, and Hongming Chen.
chemrxiv-2024-km0h1 (2024) - A unified conditional diffusion framework for dual protein targets based bioactive molecule generation [2024]
Huang, Lei, Zheng Yuan, Huihui Yan, Rong Sheng, Linjing Liu, Fuzhou Wang, Weidun Xie et al.
IEEE Transactions on Artificial Intelligence (2024) | arXiv:2306.13957 (2023) - Equivariant 3D-conditional diffusion model for molecular linker design [2024]
Igashov, I., Stärk, H., Vignac, C. et al.
Nat Mach Intell (2024) | code - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [2024] Lin, Haitao, Yufei Huang, Odin Zhang, Yunfan Liu, Lirong Wu, Siyuan Li, Zhiyuan Chen, and Stan Z. Li. Advances in Neural Information Processing Systems 36 (2024)
- Field-based Molecule Generation [2024]
Dumitrescu, Alexandru, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas Garg, and Harri Lähdesmäki.
arXiv:2402.15864 (2024) - LinkerNet: Fragment Poses and Linker Co-Design with 3D Equivariant Diffusion [2023]
Guan, Jiaqi, Xingang Peng, PeiQi Jiang, Yunan Luo, Jian Peng, and Jianzhu Ma
NeurIPS 2023. (2023) | code - MolDiff: Addressing the Atom-Bond Inconsistency Problem in 3D Molecule Diffusion Generation [2023]
Peng, Xingang, Jiaqi Guan, Qiang Liu, and Jianzhu Ma.
ICML (2023) | code - Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents [2023]
Luu, Rachel K., Marcin Wysokowski, and Markus J. Buehler.
arXiv:2304.12400v1 | code