Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 4 additions & 59 deletions scripts/inference/bloom-ds-inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,12 @@
parser.add_argument("--local_rank", required=False, type=int, help="used by dist launchers")
parser.add_argument("--batch_size", default=1, type=int, help="batch size")
parser.add_argument("--benchmark", action="store_true", help="additionally run benchmark")
parser.add_argument("--cpu_offload", action="store_true", help="whether to activate CPU offload")
args = parser.parse_args()

local_rank = int(os.getenv('LOCAL_RANK', '0'))
world_size = int(os.getenv('WORLD_SIZE', '1'))

deepspeed.init_distributed('nccl')

### Model loading and instantiating on GPU (via ZeRO)

Expand Down Expand Up @@ -132,44 +132,14 @@ def get_checkpoint_files(pretrained_model_name_or_path):
else:
dtype = torch.bfloat16

#dtype = config.dtype
#print(dtype)

model_hidden_size = config.hidden_size
train_batch_size = 1 * world_size

ds_config = {
"fp16": {
"enabled": dtype == torch.float16,
},
"bf16": {
"enabled": dtype == torch.bfloat16,
},
"zero_optimization": {
"stage": 3,
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": model_hidden_size * model_hidden_size,
"stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size,
"stage3_param_persistence_threshold": 0
},
"steps_per_print": 2000,
"train_batch_size": train_batch_size,
"train_micro_batch_size_per_gpu": 1,
"wall_clock_breakdown": False
}

if args.cpu_offload:
ds_config["zero_optimization"]["offload_param"] = dict(device="cpu", pin_memory=True)

dschf = HfDeepSpeedConfig(ds_config) # this tells from_pretrained to instantiate directly on gpus

if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('pre-from-pretrained', force=True)

model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
# Construct model with fake meta tensors, later will be replaced during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device='meta'):
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)

if args.benchmark:
deepspeed.runtime.utils.see_memory_usage('post-from-pretrained', force=True)
Expand All @@ -178,36 +148,11 @@ def get_checkpoint_files(pretrained_model_name_or_path):

rank = dist.get_rank()

if rank == 0:
print(ds_config)

ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0]
ds_engine.module.eval()
model = ds_engine.module

### Deepspeed-ZeRO Unloading

# a must to remove ZeRO-installed hooks!
ds_engine.destroy()

# free GPU storage used by ZeRO
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
def ds_clear_params(ds_engine):
for p in ds_engine.parameters():
if hasattr(p, "ds_tensor"):
p.ds_tensor = torch.empty(0, dtype=p.dtype, device=p.device)
p.ds_status = ZeroParamStatus.NOT_AVAILABLE

ds_clear_params(ds_engine)
del ds_engine

if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage('post-init-ds-zero-init', force=True)



### Deepspeed-Inference Loading

checkpoints_json = "checkpoints.json"
Expand Down