Skip to content

bienpierre/InvariantSets.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InvariantSets

Stable Dev Build Status Codecov Coveralls

InvariantSets.jl brings some of the set computational functionalities provided by MATLAB plugin Multi-Parametric Toolbox 3 (MPT) to the Julia Programming Language and extends it with lazy set computation features. This package enables the user to compute, approximate and display invariant sets using a similar notation as in MPT but without needing a costly MATLAB license.

InvariantSets.jl builds upon LazySets.jl which provides "lazy" and concrete set computation (with Polyhedra.jl and CDDLib.jl as polyhedral computation backend). As a result, if needed, the full computational power of LazySets.jl can be leveraged if needed.

Installation

Content

Set Types

Set Type Constructor Description
HPolygon/HPolytope/HPolyhedron HPolytope(A, b) P = {x∈ℝⁿ: Ax≤b}
VPolygon/VPolytope/VPolyhedron VPolytope(V) V∈ℝⁿˣᵐ
Ballp/ Ball1 / Ball2/ BallInf Ball1(center, radius)
Ellipsoid Ellipsoid(center, shape_matrix)
Zonotope Zonotope(center, generator)
Hyperrectangle Hyperrectangle(center, radius)
Hyperrectangle(low=min, high=max)
Hyperplane / HalfSpace HalfSpace(a,b)
Singleton Singleton(element)
SingleEntryVector SingleEntryVector(dim, idx, value)
Interval Interval(start, end)

Concrete Set Operations

In LazySets.jl the common operator +, * and correspond to lazy set operations. This is the same in InvariantSets.jl, in addition, the concrete set operators +ᶜ, -ᶜ, *ᶜ and ∩ᶜ. In most IDEs, the superscript can be written with \^c → tab.

using Polyhedra
using CDDLib

A = [1.0  0.0;
     0.0  1.0;
    -1.0  0.0;
     0.0 -1.0;
     1.0 1.0]
b = [1.0, 2.0, 3.0, 4.0, 1.0]
origin = [0.0, 0.0]
polygon = HPolygon(A,b)
ball = Ball1(origin, 1.3)
ball2 = Ball2(origin, 1.0)
A = [2.0 0.0; 0.0 0.5]
# Scaling
ball_scaled = 2.0 *ᶜ ball
# Linear Map
ball_lm = A *ᶜ ball
# Translation of ball
ball_trans = [2.0,2.0] +ᶜ ball
# Minkowski Sum
sum = polygon +ᶜ ball
# Pontryagin Difference
diff = polygon -ᶜ ball2
# polygon_after_diff = diff + ball2
# Intersection
intersection = polygon ᶜ ball
# Reflection
polygon_reflected = reflect(polygon)
# Minkowski Difference
diff_minsk = ball_trans +reflect(polygon)
# chebyshev center
c, r = InvariantSets.chebyshev_center(polygon,  get_radius=true)
chebyball = Ball2(c, r)

Invariant Sets & Control Systems

Name Constructor Description
preset preset(A, X)
state_constraints state_constraints(X, U, K)
maximum_invariant_set maximum_invariant_set(A, X, N)
maximum_control_invariant_set maximum_control_invariant_set(A, B, X, U, N)
terminal_set terminal_set(A, B, X, U, K)
feasible_set feasible_set(A, B, X, U, Xf, N)
maximal_RPI_set
minimal_RPI_set
tightened_constraints

Integration with MathematicalSystems.jl

A = [0.9 0.5; 0 0.9]
B = [1., 0]
X = BallInf(zeros(2), 10.)
U = BallInf(zeros(1), 1.)

K = [0.1 0.1]

autSys = @system x⁺ = A*x  xX
ctrlSys = @system x⁺ = A*x + B*u xX uU

IS = maximum_invariant_set(autSys)
MIL = maximum_invariant_set(ctrlSys, K)
MCI = maximum_control_invariant_set(ctrlSys)

Integration with JuMP.jl

using InvariantSets
using JuMP
m = Model()
@variable(m, X[1:2, 1:5])
@variable(m, U[1:1, 1:2]) # U[1,1:5] does not work
constru= BallInf(zeros(size(U,1)), 2.0)
constrx = HPolyhedron([1 -2.], [1.])
InvariantSets.add_constraint!(m, X, constrx)
InvariantSets.add_constraint!(m, U, constru)
# Feasibility
# Subject to
# X[1,1] - 2 X[2,1] <= 1.0
# X[1,2] - 2 X[2,2] <= 1.0
# X[1,3] - 2 X[2,3] <= 1.0
# X[1,4] - 2 X[2,4] <= 1.0
# X[1,5] - 2 X[2,5] <= 1.0
# U[1,1] <= 2.0
# -U[1,1] <= 2.0
# U[1,2] <= 2.0
# -U[1,2] <= 2.0

Comparison to MATLAB and MPT

Geometric operations with polyhedra

Matlab and MPT

P1 = Polyhedron( 'A', [1 -2.1 -0.5; 0.8 -3.1 0.9; -1.2 0.4 -0.8], 'b', [1; 4.9; -1.8])
P1.isEmptySet()
P1.isBounded()
P1.plot()

P2 = Polyhedron('lb', [-1; -2], 'ub', [3; 4])
P2.computeVRep
P2.V

P3 = Polyhedron([4, -1; 4, 5; 8, 3])
P3.computeHRep

V = [ -1.7 -0.4; -0.4  0.7; 1.2 -0.8; 0 0.8; 1.3 0.9; -0.3 0.6];
P4 = Polyhedron(V);
x0 = [0; 0];
P4.contains( x0 )
x1 = [3; 0];
P4.contains( x1 )

P5 = Polyhedron([ 1.8  -4.8; -7.2 -3.4; -4.2 1.2; 5.8  2.7]);
data = P5.chebyCenter()

Julia and InvariantSets

P1 = Polyhedron([1 -2.1 -0.5; 0.8 -3.1 0.9; -1.2 0.4 -0.8],  [1; 4.9; -1.8])
isempty(P1) # or P1 |> isempty
isbounded(P1)
plot(P1)

P2 = Hyperrectangle(low=[-1, -2], high=[3,4])
P2hrep = convert(HPolytope, P2)
P2vrep =  tovrep(P2hrep)
P2vrep.vertices

P3vrep = VPolytope([4 -1; 4 5; 8 3.]);
P3hrep = HPolytope(tosimplehrep(P3vrep)...)

V = [ -1.7 -0.4; -0.4  0.7; 1.2 -0.8; 0 0.8; 1.3 0.9; -0.3 0.6];
P4 = VPolytope(V');
[0., 0.]  P4
[3., 0.]  P4

P5 = VPolytope([ 1.8  -4.8; -7.2 -3.4; -4.2 1.2; 5.8  2.7]');
chebyshev_center(P5)

Maximum Control Invariant Sets

Matlab and MPT:

% computes a control invariant set for LTI system x^+ = A*x+B*u
system = LTISystem('A', [1 1; 0 0.9], 'B', [1; 0.5]);
system.x.min = [-5; -5];
system.x.max = [5; 5];
system.u.min = -1;
system.u.max = 1;
InvSet = system.invariantSet()
InvSet.plot()

Picture Julia:

using InvariantSets, Polyhedra, CDDLib
using MathematicalSystems
using Plots
A = [1 1; 0 0.9]
B = [1; 0.5]
X = Hyperrectangle(low=[-5, -5], high=[5, 5])
U = Hyperrectangle(low=[-1], high=[1])
system = @system x⁺ = A*x + B*u xX uU
InvSet = maximum_control_invariant_set(system)
plot(InvSet)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%