-
Notifications
You must be signed in to change notification settings - Fork 194
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
888 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""Builder function to construct tf.contrib.layers arg_scope for convolution, fc ops.""" | ||
import tensorflow as tf | ||
|
||
from rare.protos import hyperparams_pb2 | ||
|
||
from tensorflow.contrib import layers | ||
from tensorflow.contrib.framework import arg_scope | ||
|
||
|
||
def build(hyperparams_config, is_training): | ||
"""Builds arg_scope for convolution ops based on the config. | ||
Returns an arg_scope to use for convolution ops containing weights | ||
initializer, weights regularizer, activation function, batch norm function | ||
and batch norm parameters based on the configuration. | ||
Note that if the batch_norm parameteres are not specified in the config | ||
(i.e. left to default) then batch norm is excluded from the arg_scope. | ||
The batch norm parameters are set for updates based on `is_training` argument | ||
and conv_hyperparams_config.batch_norm.train parameter. During training, they | ||
are updated only if batch_norm.train parameter is true. However, during eval, | ||
no updates are made to the batch norm variables. In both cases, their current | ||
values are used during forward pass. | ||
Args: | ||
hyperparams_config: hyperparams.proto object containing | ||
hyperparameters. | ||
is_training: Whether the network is in training mode. | ||
Returns: | ||
arg_scope: arg_scope containing hyperparameters for ops. | ||
Raises: | ||
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams. | ||
""" | ||
if not isinstance(hyperparams_config, | ||
hyperparams_pb2.Hyperparams): | ||
raise ValueError('hyperparams_config not of type ' | ||
'hyperparams_pb.Hyperparams.') | ||
|
||
batch_norm = None | ||
batch_norm_params = None | ||
if hyperparams_config.HasField('batch_norm'): | ||
batch_norm = layers.batch_norm | ||
batch_norm_params = _build_batch_norm_params( | ||
hyperparams_config.batch_norm, is_training) | ||
|
||
affected_ops = [layers.conv2d, layers.separable_conv2d, layers.conv2d_transpose] | ||
if hyperparams_config.HasField('op') and ( | ||
hyperparams_config.op == hyperparams_pb2.Hyperparams.FC): | ||
affected_ops = [layers.fully_connected] | ||
with arg_scope( | ||
affected_ops, | ||
weights_regularizer=_build_regularizer( | ||
hyperparams_config.regularizer), | ||
weights_initializer=_build_initializer( | ||
hyperparams_config.initializer), | ||
activation_fn=_build_activation_fn(hyperparams_config.activation), | ||
normalizer_fn=batch_norm, | ||
normalizer_params=batch_norm_params) as sc: | ||
return sc | ||
|
||
|
||
def _build_activation_fn(activation_fn): | ||
"""Builds a callable activation from config. | ||
Args: | ||
activation_fn: hyperparams_pb2.Hyperparams.activation | ||
Returns: | ||
Callable activation function. | ||
Raises: | ||
ValueError: On unknown activation function. | ||
""" | ||
if activation_fn == hyperparams_pb2.Hyperparams.NONE: | ||
return None | ||
if activation_fn == hyperparams_pb2.Hyperparams.RELU: | ||
return tf.nn.relu | ||
if activation_fn == hyperparams_pb2.Hyperparams.RELU_6: | ||
return tf.nn.relu6 | ||
raise ValueError('Unknown activation function: {}'.format(activation_fn)) | ||
|
||
|
||
def _build_regularizer(regularizer): | ||
"""Builds a regularizer from config. | ||
Args: | ||
regularizer: hyperparams_pb2.Hyperparams.regularizer proto. | ||
Returns: | ||
regularizer. | ||
Raises: | ||
ValueError: On unknown regularizer. | ||
""" | ||
regularizer_oneof = regularizer.WhichOneof('regularizer_oneof') | ||
if regularizer_oneof == 'l1_regularizer': | ||
return layers.l1_regularizer(scale=float(regularizer.l1_regularizer.weight)) | ||
if regularizer_oneof == 'l2_regularizer': | ||
return layers.l2_regularizer(scale=float(regularizer.l2_regularizer.weight)) | ||
raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof)) | ||
|
||
|
||
def _build_initializer(initializer): | ||
"""Build a tf initializer from config. | ||
Args: | ||
initializer: hyperparams_pb2.Hyperparams.regularizer proto. | ||
Returns: | ||
tf initializer. | ||
Raises: | ||
ValueError: On unknown initializer. | ||
""" | ||
initializer_oneof = initializer.WhichOneof('initializer_oneof') | ||
if initializer_oneof == 'truncated_normal_initializer': | ||
return tf.truncated_normal_initializer( | ||
mean=initializer.truncated_normal_initializer.mean, | ||
stddev=initializer.truncated_normal_initializer.stddev) | ||
if initializer_oneof == 'variance_scaling_initializer': | ||
enum_descriptor = (hyperparams_pb2.VarianceScalingInitializer. | ||
DESCRIPTOR.enum_types_by_name['Mode']) | ||
mode = enum_descriptor.values_by_number[initializer. | ||
variance_scaling_initializer. | ||
mode].name | ||
return layers.variance_scaling_initializer( | ||
factor=initializer.variance_scaling_initializer.factor, | ||
mode=mode, | ||
uniform=initializer.variance_scaling_initializer.uniform) | ||
raise ValueError('Unknown initializer function: {}'.format( | ||
initializer_oneof)) | ||
|
||
|
||
def _build_batch_norm_params(batch_norm, is_training): | ||
"""Build a dictionary of batch_norm params from config. | ||
Args: | ||
batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto. | ||
is_training: Whether the models is in training mode. | ||
Returns: | ||
A dictionary containing batch_norm parameters. | ||
""" | ||
batch_norm_params = { | ||
'decay': batch_norm.decay, | ||
'center': batch_norm.center, | ||
'scale': batch_norm.scale, | ||
'epsilon': batch_norm.epsilon, | ||
'fused': True, | ||
'is_training': is_training and batch_norm.train, | ||
} | ||
return batch_norm_params |
Oops, something went wrong.