Skip to content

merge #948

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 6, 2024
Merged

merge #948

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions helpers/configuration/cmd_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,13 @@ def parse_cmdline_args(input_args=None):
default="config/lycoris_config.json",
help=("The location for the JSON file of the Lycoris configuration."),
)
parser.add_argument(
"--init_lokr_norm",
type=float,
required=False,
default=None,
help=("Setting this turns on perturbed normal initialization of the LyCORIS LoKr PEFT layers. A good value is between 1e-4 and 1e-2."),
)
parser.add_argument(
"--controlnet",
action="store_true",
Expand Down
24 changes: 24 additions & 0 deletions helpers/training/peft_init.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import torch


def approximate_normal_tensor(inp, target, scale=1.0):
tensor = torch.randn_like(target)
desired_norm = inp.norm()
desired_mean = inp.mean()
desired_std = inp.std()

current_norm = tensor.norm()
tensor = tensor * (desired_norm / current_norm)
current_std = tensor.std()
tensor = tensor * (desired_std / current_std)
tensor = tensor - tensor.mean() + desired_mean
tensor.mul_(scale)

target.copy_(tensor)


def init_lokr_network_with_perturbed_normal(lycoris, scale=1e-3):
with torch.no_grad():
for lora in lycoris.loras:
lora.lokr_w1.fill_(1.0)
approximate_normal_tensor(lora.org_weight, lora.lokr_w2, scale=scale)
8 changes: 8 additions & 0 deletions helpers/training/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@
segmented_timestep_selection,
)
from helpers.training.min_snr_gamma import compute_snr
from helpers.training.peft_init import init_lokr_network_with_perturbed_standard
from accelerate.logging import get_logger
from diffusers.models.embeddings import get_2d_rotary_pos_embed
from helpers.models.smoldit import get_resize_crop_region_for_grid
Expand Down Expand Up @@ -794,6 +795,12 @@ def init_trainable_peft_adapter(self):
**self.lycoris_config,
)

if self.config.init_lycoris_lokr_perturbed_normal is not None:
init_lokr_network_with_perturbed_standard(
self.lycoris_wrapped_network,
scale=self.config.init_lokr_norm,
)

self.lycoris_wrapped_network.apply_to()
setattr(
self.accelerator,
Expand Down Expand Up @@ -1319,6 +1326,7 @@ def init_trackers(self):
delattr(public_args, "process_group_kwargs")
delattr(public_args, "weight_dtype")
delattr(public_args, "base_weight_dtype")
delattr(public_args, "vae_kwargs")

# Hash the contents of public_args to reflect a deterministic ID for a single set of params:
public_args_hash = hashlib.md5(
Expand Down
10 changes: 9 additions & 1 deletion helpers/training/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -1333,7 +1333,15 @@ def _log_validations_to_webhook(

def _log_validations_to_trackers(self, validation_images):
for tracker in self.accelerator.trackers:
if tracker.name == "wandb":
if tracker.name == "comet_ml":
experiment = self.accelerator.get_tracker("comet_ml").tracker
for shortname, image_list in validation_images.items():
for idx, image in enumerate(image_list):
experiment.log_image(
image,
name=f"{shortname} - {self.validation_resolutions[idx]}",
)
elif tracker.name == "wandb":
resolution_list = [
f"{res[0]}x{res[1]}" for res in get_validation_resolutions()
]
Expand Down
Loading