Skip to content
/ pykakasi Public
forked from miurahr/pykakasi

NLP: Convert Japanese Kana-kanji sentences into Kana-Roman in simple algorithm.

License

Notifications You must be signed in to change notification settings

bebax/pykakasi

 
 

Repository files navigation

Pykakasi

Overview

Documentation Status PyPI version Travis-CI Azure-Pipelines Coverage status

pykakasi is a Python Natural Language Processing (NLP) library to transliterate hiragana, katakana and kanji (Japanese text) into rōmaji (Latin/Roman alphabet). It can handle characters in NFC form.

It is based on the kakasi library, which is written in C.

Supported python versions

  • pykakasi 1.2 supports python 2.7, python 3.5, 3.6, 3.7
  • pykakasi 2.0 supports python 3.6, 3.7, 3.8, pypy3.6-7.1.1

Usage

Here is an usage of NewAPI for pykakasi v2.0.0 and later. Transliterate Japanese text to kana, hiragana and romaji:

import pykakasi
kks = pykakasi.kakasi()
text = "かな漢字"
result = kks.convert(text)
for item in result:
    print("{}: kana '{}', hiragana '{}', romaji: '{}'".format(item['orig'], item['kana'], item['hira'], item['hepburn']))

かな: kana 'カナ', hiragana: 'かな', romaji: 'kana'
漢字: kana 'カンジ', hiragana: 'かんじ', romaji: 'kanji'

Here is an example that output as similar with furigana mode.

import pykakasi
kks = pykakasi.kakasi()
text = "かな漢字交じり文"
result = kks.convert(text)
for item in result:
    print("{}[{}] ".format(item['orig'], item['hepburn'].capitalize()), end='')
print()

かな[Kana] 漢字[Kanji] 交じり[Majiri] 文[Bun]

Old API

There is also an old API for v1.2.

Transliterate Japanese text to rōmaji:

>>> import pykakasi
>>>
>>> text = u"かな漢字交じり文"
>>> kakasi = pykakasi.kakasi()
>>> kakasi.setMode("H","a") # Hiragana to ascii, default: no conversion
>>> kakasi.setMode("K","a") # Katakana to ascii, default: no conversion
>>> kakasi.setMode("J","a") # Japanese to ascii, default: no conversion
>>> kakasi.setMode("r","Hepburn") # default: use Hepburn Roman table
>>> kakasi.setMode("s", True) # add space, default: no separator
>>> kakasi.setMode("C", True) # capitalize, default: no capitalize
>>> conv = kakasi.getConverter()
>>> result = conv.do(text)
>>> print(result)
kana Kanji Majiri Bun

Tokenize Japanese text (split by word boundaries), equivalent to kakasi's wakati gaki option:

>>> wakati = pykakasi.wakati()
>>> conv = wakati.getConverter()
>>> result = conv.do(text)
>>> print(result)
かな 漢字 交じり 文

Add furigana (pronounciation aid) in rōmaji to text:

>>> kakasi = pykakasi.kakasi()
>>> kakasi.setMode("J","aF") # Japanese to furigana
>>> kakasi.setMode("H","aF") # Japanese to furigana
>>> conv = kakasi.getConverter()
>>> result = conv.do(text)
>>> print(result)
かな[kana] 漢字[Kanji] 交じり[Majiri] 文[Bun]

Input mode values: "J" (Japanese: kanji, hiragana and katakana), "H" (hiragana), "K" (katakana).

Output mode values: "H" (hiragana), "K" (katakana), "a" (alphabet / rōmaji), "aF" (furigana in rōmaji).

There are other setMode switches which control output:

  • "r": Romanisation table: Hepburn (default), Kunrei or Passport
  • "s": Separator: False adds no spaces between words (default), True adds spaces between words
  • "C": Capitalize: False adds no capital letters (default), True makes each word start with a capital letter

Copyright and License

Copyright 2010-2020 Hiroshi Miura <[email protected]>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

About

NLP: Convert Japanese Kana-kanji sentences into Kana-Roman in simple algorithm.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%