Skip to content
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
58f48d3
Add functionality to save and load state of the BayesianOptimization
adrianmolzon Jan 6, 2025
71036c6
Update basic-tour with new save and load functionality
adrianmolzon Jan 6, 2025
84d036d
move load stateful path to optional argument in class instantiation
adrianmolzon Jan 28, 2025
6ae61d9
add test for string params, update tests with new load functionality
adrianmolzon Jan 28, 2025
7be3854
updated basic tour with updated paths
adrianmolzon Jan 28, 2025
2b514aa
add the random state to the set of things to list of saved items
adrianmolzon Feb 6, 2025
be73262
move state loading to separate function, add functionality for saving…
adrianmolzon Feb 6, 2025
ad2c822
use new loading schema
adrianmolzon Feb 6, 2025
aa86e2f
update tests, add integration tests for saving and loading acquisitio…
adrianmolzon Feb 6, 2025
c26504e
undo abstractmethod implementation for get and set state saving funct…
adrianmolzon Feb 6, 2025
4aab0b8
reorganize state saving and loading for consistency
adrianmolzon Feb 10, 2025
14ea11a
move integration tests into acquisition
adrianmolzon Feb 10, 2025
a782960
remove unndecessary test, add tests for domain reduction and custom p…
adrianmolzon Feb 10, 2025
b209c64
make test more comprehensive
adrianmolzon Feb 10, 2025
79b701c
add test logs
adrianmolzon Feb 10, 2025
7d6b9d6
sync execution counts from basic tour
adrianmolzon Feb 17, 2025
ab765b4
linting, whitespace removal, import structuring
adrianmolzon Mar 5, 2025
c2ea551
ruff fix for string literal in error message
adrianmolzon Mar 5, 2025
c21c6c6
fix ruff complaints
adrianmolzon Mar 5, 2025
57092d9
make all side param comparisons almost equal to account for slight nu…
adrianmolzon Mar 5, 2025
9e57bff
reformat array comparison check
adrianmolzon Mar 5, 2025
289a0d5
upgrade poetry2.0 & apply pep621 (#545)
phi-friday Feb 27, 2025
d0ef58a
Fix coverage report (#552)
till-m Mar 9, 2025
a68d727
remove unnecessary files, have acquisition baseclass functions raise …
adrianmolzon Mar 9, 2025
3d3e538
remove duplicate acquisition functions random state
adrianmolzon Mar 9, 2025
cf87c7b
ruff format
adrianmolzon Mar 9, 2025
b5ae882
add type hints for base acquisition get/set functions
adrianmolzon Mar 10, 2025
02d2643
remove noreturn
adrianmolzon Mar 10, 2025
2f8ab64
remove former saving functionality from notebooks
adrianmolzon Mar 10, 2025
413f467
increase legibility of custom acquisition example
adrianmolzon Mar 10, 2025
472fd93
explicitly stating the optionality of the saving and loading in custo…
adrianmolzon Mar 10, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 142 additions & 8 deletions bayes_opt/acquisition.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,18 +69,57 @@ def __init__(self, random_state: int | RandomState | None = None) -> None:
self.random_state = RandomState()
self.i = 0

def _serialize_random_state(self) -> dict | None:
"""Convert random state to JSON serializable format."""
if self.random_state is not None:
state = self.random_state.get_state()
return {
'bit_generator': state[0],
'state': state[1].tolist(), # Convert numpy array to list
'pos': state[2],
'has_gauss': state[3],
'cached_gaussian': state[4]
}
return None

def _deserialize_random_state(self, state_dict: dict | None) -> None:
"""Restore random state from JSON serializable format."""
if state_dict is not None:
if self.random_state is None:
self.random_state = RandomState()
state = (
state_dict['bit_generator'],
np.array(state_dict['state'], dtype=np.uint32),
state_dict['pos'],
state_dict['has_gauss'],
state_dict['cached_gaussian']
)
self.random_state.set_state(state)

@abc.abstractmethod
def base_acq(self, *args: Any, **kwargs: Any) -> NDArray[Float]:
"""Provide access to the base acquisition function."""

def _fit_gp(self, gp: GaussianProcessRegressor, target_space: TargetSpace) -> None:
# Sklearn's GP throws a large number of warnings at times, but
# we don't really need to see them here.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
gp.fit(target_space.params, target_space.target)
if target_space.constraint is not None:
target_space.constraint.fit(target_space.params, target_space._constraint_values)
def get_acquisition_params(self) -> dict[str, Any]:
"""Get the acquisition function parameters.

Returns
-------
dict
Dictionary containing the acquisition function parameters.
All values must be JSON serializable.
"""
return {}

def set_acquisition_params(self, params: dict[str, Any]) -> None:
"""Set the acquisition function parameters.

Parameters
----------
params : dict
Dictionary containing the acquisition function parameters.
"""
pass

def suggest(
self,
Expand Down Expand Up @@ -128,6 +167,15 @@ def suggest(

acq = self._get_acq(gp=gp, constraint=target_space.constraint)
return self._acq_min(acq, target_space, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b)

def _fit_gp(self, gp: GaussianProcessRegressor, target_space: TargetSpace) -> None:
# Sklearn's GP throws a large number of warnings at times, but
# we don't really need to see them here.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
gp.fit(target_space.params, target_space.target)
if target_space.constraint is not None:
target_space.constraint.fit(target_space.params, target_space._constraint_values)

def _get_acq(
self, gp: GaussianProcessRegressor, constraint: ConstraintModel | None = None
Expand Down Expand Up @@ -453,6 +501,20 @@ def decay_exploration(self) -> None:
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.kappa = self.kappa * self.exploration_decay

def get_acquisition_params(self) -> dict:
return {
"kappa": self.kappa,
"exploration_decay": self.exploration_decay,
"exploration_decay_delay": self.exploration_decay_delay,
"random_state": self._serialize_random_state()
}

def set_acquisition_params(self, params: dict) -> None:
self.kappa = params["kappa"]
self.exploration_decay = params["exploration_decay"]
self.exploration_decay_delay = params["exploration_decay_delay"]
self._deserialize_random_state(params["random_state"])


class ProbabilityOfImprovement(AcquisitionFunction):
Expand Down Expand Up @@ -586,6 +648,21 @@ def decay_exploration(self) -> None:
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.xi = self.xi * self.exploration_decay

def get_acquisition_params(self) -> dict:
"""Get the acquisition function parameters."""
return {
"xi": self.xi,
"exploration_decay": self.exploration_decay,
"exploration_decay_delay": self.exploration_decay_delay,
"random_state": self._serialize_random_state()
}

def set_acquisition_params(self, params: dict) -> None:
self.xi = params["xi"]
self.exploration_decay = params["exploration_decay"]
self.exploration_decay_delay = params["exploration_decay_delay"]
self._deserialize_random_state(params["random_state"])


class ExpectedImprovement(AcquisitionFunction):
Expand Down Expand Up @@ -727,6 +804,20 @@ def decay_exploration(self) -> None:
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.xi = self.xi * self.exploration_decay

def get_acquisition_params(self) -> dict:
return {
"xi": self.xi,
"exploration_decay": self.exploration_decay,
"exploration_decay_delay": self.exploration_decay_delay,
"random_state": self._serialize_random_state()
}

def set_acquisition_params(self, params: dict) -> None:
self.xi = params["xi"]
self.exploration_decay = params["exploration_decay"]
self.exploration_decay_delay = params["exploration_decay_delay"]
self._deserialize_random_state(params["random_state"])


class ConstantLiar(AcquisitionFunction):
Expand Down Expand Up @@ -917,6 +1008,24 @@ def suggest(
self.dummies.append(x_max)

return x_max

def get_acquisition_params(self) -> dict:
return {
"dummies": [dummy.tolist() for dummy in self.dummies],
"base_acquisition_params": self.base_acquisition.get_acquisition_params(),
"strategy": self.strategy,
"atol": self.atol,
"rtol": self.rtol,
"random_state": self._serialize_random_state()
}

def set_acquisition_params(self, params: dict) -> None:
self.dummies = [np.array(dummy) for dummy in params["dummies"]]
self.base_acquisition.set_acquisition_params(params["base_acquisition_params"])
self.strategy = params["strategy"]
self.atol = params["atol"]
self.rtol = params["rtol"]
self._deserialize_random_state(params["random_state"])


class GPHedge(AcquisitionFunction):
Expand Down Expand Up @@ -1035,3 +1144,28 @@ def suggest(
self.previous_candidates = np.array(x_max)
idx = self._sample_idx_from_softmax_gains()
return x_max[idx]

def get_acquisition_params(self) -> dict:
return {
"base_acquisitions_params": [acq.get_acquisition_params() for acq in self.base_acquisitions],
"gains": self.gains.tolist(),
"previous_candidates": self.previous_candidates.tolist() if self.previous_candidates is not None else None,
"random_states": [acq._serialize_random_state() for acq in self.base_acquisitions] + [self._serialize_random_state()]
}

def set_acquisition_params(self, params: dict) -> None:
for acq, acq_params, random_state in zip(
self.base_acquisitions,
params["base_acquisitions_params"],
params["random_states"][:-1]
):
acq.set_acquisition_params(acq_params)
acq._deserialize_random_state(random_state)

self.gains = np.array(params["gains"])
self.previous_candidates = (np.array(params["previous_candidates"])
if params["previous_candidates"] is not None
else None)

self._deserialize_random_state(params["random_states"][-1])

126 changes: 125 additions & 1 deletion bayes_opt/bayesian_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,16 @@
from typing import TYPE_CHECKING, Any
from warnings import warn

import json
from pathlib import Path
from os import PathLike

import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern

from scipy.optimize import NonlinearConstraint

from bayes_opt import acquisition
from bayes_opt.constraint import ConstraintModel
from bayes_opt.domain_reduction import DomainTransformer
Expand All @@ -28,7 +34,6 @@

from numpy.random import RandomState
from numpy.typing import NDArray
from scipy.optimize import NonlinearConstraint

from bayes_opt.acquisition import AcquisitionFunction
from bayes_opt.constraint import ConstraintModel
Expand Down Expand Up @@ -356,3 +361,122 @@ def set_gp_params(self, **params: Any) -> None:
if "kernel" in params:
params["kernel"] = wrap_kernel(kernel=params["kernel"], transform=self._space.kernel_transform)
self._gp.set_params(**params)

def save_state(self, path: str | PathLike[str]) -> None:
"""Save complete state for reconstruction of the optimizer.

Parameters
----------
path : str or PathLike
Path to save the optimization state

Raises
------
ValueError
If attempting to save state before collecting any samples.
"""
if len(self._space) == 0:
raise ValueError(
"Cannot save optimizer state before collecting any samples. "
"Please probe or register at least one point before saving."
)

random_state = None
if self._random_state is not None:
state_tuple = self._random_state.get_state()
random_state = {
'bit_generator': state_tuple[0],
'state': state_tuple[1].tolist(),
'pos': state_tuple[2],
'has_gauss': state_tuple[3],
'cached_gaussian': state_tuple[4],
}

# Get constraint values if they exist
constraint_values = (self._space._constraint_values.tolist()
if self.is_constrained
else None)
acquisition_params = self._acquisition_function.get_acquisition_params()
state = {
"pbounds": {
key: self._space._bounds[i].tolist()
for i, key in enumerate(self._space.keys)
},
# Add current transformed bounds if using bounds transformer
"transformed_bounds": (
self._space.bounds.tolist()
if self._bounds_transformer
else None
),
"keys": self._space.keys,
"params": np.array(self._space.params).tolist(),
"target": self._space.target.tolist(),
"constraint_values": constraint_values,
"gp_params": {
"kernel": self._gp.kernel.get_params(),
"alpha": self._gp.alpha,
"normalize_y": self._gp.normalize_y,
"n_restarts_optimizer": self._gp.n_restarts_optimizer,
},
"allow_duplicate_points": self._allow_duplicate_points,
"verbose": self._verbose,
"random_state": random_state,
"acquisition_params": acquisition_params,
}

with Path(path).open('w') as f:
json.dump(state, f, indent=2)

def load_state(self, path: str | PathLike[str]) -> None:
with Path(path).open('r') as file:
state = json.load(file)

params_array = np.asarray(state["params"], dtype=np.float64)
target_array = np.asarray(state["target"], dtype=np.float64)
constraint_array = (np.array(state["constraint_values"])
if state["constraint_values"] is not None
else None)

for i in range(len(params_array)):
params = self._space.array_to_params(params_array[i])
target = target_array[i]
constraint = constraint_array[i] if constraint_array is not None else None
self.register(
params=params,
target=target,
constraint_value=constraint
)

self._acquisition_function.set_acquisition_params(state["acquisition_params"])

if state.get("transformed_bounds") and self._bounds_transformer:
new_bounds = {
key: bounds for key, bounds in zip(
self._space.keys,
np.array(state["transformed_bounds"])
)
}
self._space.set_bounds(new_bounds)
self._bounds_transformer.initialize(self._space)

self._gp.set_params(**state["gp_params"])
if isinstance(self._gp.kernel, dict):
kernel_params = self._gp.kernel
self._gp.kernel = Matern(
length_scale=kernel_params['length_scale'],
length_scale_bounds=tuple(kernel_params['length_scale_bounds']),
nu=kernel_params['nu']
)

self._gp.fit(self._space.params, self._space.target)

if state["random_state"] is not None:
random_state_tuple = (
state["random_state"]["bit_generator"],
np.array(state["random_state"]["state"], dtype=np.uint32),
state["random_state"]["pos"],
state["random_state"]["has_gauss"],
state["random_state"]["cached_gaussian"],
)
self._random_state.set_state(random_state_tuple)

Loading
Loading