-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Description
Please fill out the form below.
System Information
- **Keras (tensorflow)/ MaskRCNN:
- Keras 2.2 tensorflow 1.7:
- Py3:
- (GPU):
- Python 3.6:
- Yes using a custom Image:
Describe the problem
HI I am trying to debug the docker image that I am using for sagemaker. However while trying to run the notebook in local mode it gives the following error : How do I access the logs for the run ?
RuntimeError Traceback (most recent call last)
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/local/image.py in train(self, input_data_config, hyperparameters)
110 try:
--> 111 _stream_output(process)
112 except RuntimeError as e:
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/local/image.py in _stream_output(process)
588 if exit_code != 0:
--> 589 raise RuntimeError("Process exited with code: %s" % exit_code)
590
RuntimeError: Process exited with code: 1
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<timed exec> in <module>()
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/estimator.py in fit(self, inputs, wait, logs, job_name)
176 self._prepare_for_training(job_name=job_name)
177
--> 178 self.latest_training_job = _TrainingJob.start_new(self, inputs)
179 if wait:
180 self.latest_training_job.wait(logs=logs)
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/estimator.py in start_new(cls, estimator, inputs)
361 job_name=estimator._current_job_name, output_config=config['output_config'],
362 resource_config=config['resource_config'], hyperparameters=hyperparameters,
--> 363 stop_condition=config['stop_condition'], tags=estimator.tags)
364
365 return cls(estimator.sagemaker_session, estimator._current_job_name)
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/session.py in train(self, image, input_mode, input_config, role, job_name, output_config, resource_config, hyperparameters, stop_condition, tags)
262 LOGGER.info('Creating training-job with name: {}'.format(job_name))
263 LOGGER.debug('train request: {}'.format(json.dumps(train_request, indent=4)))
--> 264 self.sagemaker_client.create_training_job(**train_request)
265
266 def tune(self, job_name, strategy, objective_type, objective_metric_name,
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/local/local_session.py in create_training_job(self, TrainingJobName, AlgorithmSpecification, RoleArn, InputDataConfig, OutputDataConfig, ResourceConfig, StoppingCondition, HyperParameters, Tags)
73 data_distribution)
74
---> 75 self.s3_model_artifacts = self.train_container.train(InputDataConfig, HyperParameters)
76
77 def describe_training_job(self, TrainingJobName):
~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/local/image.py in train(self, input_data_config, hyperparameters)
113 # _stream_output() doesn't have the command line. We will handle the exception
114 # which contains the exit code and append the command line to it.
--> 115 msg = "Failed to run: %s, %s" % (compose_command, e.message)
116 raise RuntimeError(msg)
117
AttributeError: 'RuntimeError' object has no attribute 'message'
Metadata
Metadata
Assignees
Labels
No labels