Skip to content

awmmmm/midigan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

midigan

we provided dataset mentioned in our paper in google drive.

you can see it using python with numpy package.

train_data = np.load("X_train.npy").squeeze(2)
print(train_data)
print(train_data.shape)
[[ 0.92631579  0.92982456  0.92631579 ...  0.78947368  0.03508772
   0.47017544]
 [ 0.92982456  0.92631579  0.92982456 ...  0.03508772  0.47017544
   0.92982456]
 [ 0.92631579  0.92982456  0.92982456 ...  0.47017544  0.92982456
   0.98596491]
 ...
 [-0.86315789 -0.85614035 -0.87719298 ... -0.87719298  0.32631579
  -0.57192982]
 [-0.85614035 -0.87719298  0.32631579 ...  0.32631579 -0.57192982
  -0.87719298]
 [-0.87719298  0.32631579 -0.03157895 ... -0.57192982 -0.87719298
   0.32631579]]
(158373, 100)

as we can see , the first output the specific content ,the second output show the format ,the dataset is composed of 158373 piece of 100 dim data,each data range in (-1,1).

we also provided the chord dict we used in our paper in dictionary './dataset' that the first column is the index of the chord and the second column is the chord itself.

Citation

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages