Skip to content

asavinov/machine-learning-and-data-processing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 

Repository files navigation

A collection of resources on machine learning, data processing and related areas

Analysis of different types of data

Time series and forecasting

Books and articles:

Implementations:

Stock price forecasting:

Lists:

Spatial data

Audio and sound

General audio processing libraries:

Text to speech (TTS)

Speech recognition:

https://github.com/wenet-e2e/wenet

Pitch trackers:

Other

Books and other resources:

Text NLP

Lists:

Video

Images

Graphs, RDFs etc.

Graph stores:

Databases:

Visualizations and dashboards:

  • graphviz

Statistics

Reinforcement learning

AI, data mining, machine learning algorithms

Resources:

Algorithms:

  • XGBoost, CatBoost, LightGBM
  • stars https://github.com/spotify/annoy Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
    • USP: ability to use static files as indexes, share index across process, that is, in-memory and efficient and multi-process
    • e.g, music recommendation in Spotify, similar images (for labeling etc.)

Data and knowledge engineering

Feature engineering

Time series:

Feature extraction:

Feature selection:

Hyper-parameter optimization:

Lists:

Feature stores

Resources:

Model management

TBD

AutoML

AutoML libs:

Systems and companies:

  • DataRobot
  • DarwinAI
  • H2O.ai Dreverless AI
  • OneClick.ai

Workflow/job management, Data integration, ETL, web scrapping, orchestration

For workflows, it is important how the following concepts are implemented:

  • Workflow task: what can be executed and how we specify the tasks to be executed (programmatically, declaratively etc.)
  • Dependencies: when and how tasks are started. It is not only about simple conditions like whether a (previous) task has been finished and with which status. Conditions might be much more complex and be essentially separate tasks.
    • How to define conditional execution where execution of a task depends on dynamic conditions
    • Choosing a task to be executed dynamically, that is, task to be executed is not known at the time of graph definition
  • Triggering workflows: How a whole workflow execution can be started (from inside or outside). These functions make workflow managers similar to asynchronous systems:
    • From external systems, for example, by listening to some protocol
    • Synchronous execution, for example, using schedulers like once per day

A conventional workflow management system deals with task arguments and task return values. The goal here is to make the whole workflow with all its tasks data-aware, for example, by sharing some data. For the point of view of data processing, there is an additional aspect:

  • If it is a graph of data processing, then the question is where and how the system takes the data properties into account:
    • Data state and data ranges like only data for the last month
    • Data structure like columns and tables, for example, only these tables
  • Such data-aware workflows are most important for data-driven business, and the question is what they know about the data and how this knowledge is used to manage and execute workflow.

General purpose workflow management systems:

ML workflow, pipelines, training, deployment etc.

Data science support and tooling

ETL and data integration:

Stream processing:

Web scrapping

Data labeling

Visualization and VA

Dashboards:

Publishing notebooks (from github etc.):

Asynchronous data processing

What is asynchronous data processing

TBD

Reactive programming

Approaches to asynchronous programming:

  • Callback model:

    • A callback function is provided as part of an asynchronous call
    • The call is non-blocking and the source program continues execution
    • It is not possible to await for the return (it is essentially done by the callback function)
    • The callback function can be viewed as a one-time listener for a return event, that is, it represents code which consumes the result
    • The source code where the call is made and the consumer of the result are in different functions and cannot share (local) context
    • The callback function may make its own asynchronous calls which leads to a "callback hell"
  • Future/promise:

    • An asynchronous call is made as usual but return a special wrapper object
    • A callback function is not specified and is not used
    • The returned result is consumed by the code which follows the call (as opposed to its use in a separate callback function)
    • The future/promise is supposed to be awaited. Awaiting denotes a point where we say that the next instruction needs the result
    • The awaiting point is like a one-time single-value listener for the result where the program execution is suspended until the return event is received

Resources:

Reactive streaming

  • Listeners:

    • A callback function is registered and then automatically called for each incoming event
    • Callback functions are (normally) called only sequentially, that is, next event can be processed only when the previous event has been processed by the previous callback invocation. Callbacks are not executed concurrently.
    • The result of a callback invocation is frequently needed because it is executed by the event producer
  • Reactive streams:

  • Actor model:

Event loops vs. threads

  • Both a thread task and an event loop task are executed until finished, that is, the code to execute is provided as a procedure
  • Thread tasks are dispatched by the system (not application) while dispatching logic of event tasks is part of the application
  • At each moment, there is a fixed number of threads concurrently executed by one process. The number of concurrently executed event loop tasks is not limited.
  • Thread tasks are (automatically) switched at the instruction level and the dispatcher is unaware of the needs of this thread or the application. Event loop tasks are switched at the level of logical application units depending on what this application needs.
  • In a multi-thread application, we need to manage the threads ourselves, e.g., by creating and deleting them. In an event loop application, the tasks (starting, suspending, finishing) is managed by the event loop manager.
  • In an event loop application, tasks specify dependencies on other tasks, and these points are used while dispatching the execution of tasks. Threads cannot declare dependencies on the results provided by other tasks. If we need some external result, then the thread has to wait. This logic has to be implemented manually and the system dispatcher is unaware of these dependencies.

Event loops:

Resources:

Async networking libraries

  • stars https://github.com/gevent/gevent coroutine - based Python networking library. "systems like gevent use lightweight threads to offer performance comparable to asynchronous systems, but they do not actually make things asynchronous"

    • greenlet to provide a high-level synchronous API
      • on top of the libev or libuv event loop (like libevent)
  • stars https://github.com/eventlet/eventlet concurrent networking library for Python

    • epoll or kqueue or libevent for highly scalable non-blocking I/O
  • stars https://github.com/aio-libs/aiohttp Asynchronous HTTP client/server framework for asyncio and Python

  • stars https://github.com/twisted/twisted Event-driven networking engine written in Python.

    • Twisted projects variously support TCP, UDP, SSL/TLS, IP multicast, Unix domain sockets, many protocols (including HTTP, XMPP, NNTP, IMAP, SSH, IRC, FTP, and others), and much more.
    • Twisted supports all major system event loops:
      • select (all platforms),
      • poll (most POSIX platforms),
      • epoll (Linux),
      • kqueue (FreeBSD, macOS),
      • IOCP (Windows),
      • various GUI event loops (GTK+2/3, Qt, wxWidgets)

Async web frameworks

Utilities

Retry libraries:

Libraries, utilities, tools

Python

Resources:

Tools

  • Data structures:

  • Networking:

    • certifi: A carefully curated collection of Root Certificates for validating the trustworthiness of SSL certificates while verifying the identity of TLS hosts
    • urllib3: HTTP library with thread-safe connection pooling, file post support, sanity friendly, and more

Other:

  • click: creating beautiful command line interfaces
  • chardet

Formats, persistence and serialization

Authentication, Authorization, Security

Identity and Access Management

Secrets management, encryption as a service, and privileged access management. A secret is anything that you want to tightly control access to, such as API keys, passwords, certificates, and more.

Policy Enforcement Point, Identity And Access Proxy (IAP), Zero-Trust Network Architecture, i.e. a reverse proxy in front of your upstream API or web server that rejects unauthorized requests and forwards authorized ones to your server.

Resources:

Linux and OS

Resources:

Platform and servers

Load balancing and proxy:

Dockerized automated https reverse proxy:

Discussions:

Service registry and orchestrator:

  • etcd
  • consul

Logging, tracing, monitoring

Computing

Resources:

GPU/ML hosting and clouds

Other resources

Data sources

Books

Python:

Releases

No releases published

Packages

No packages published