einops_video.mp4
Flexible and powerful tensor operations for readable and reliable code.
Supports numpy, pytorch, tensorflow, jax, and others.
- 0.8.0: tinygrad backend added, small fixes
- 0.7.0: no-hassle
torch.compile
, support of array api standard and more - 10'000🎉: github reports that more than 10k project use einops
- einops 0.6.1: paddle backend added
- einops 0.6 introduces packing and unpacking
- einops 0.5: einsum is now a part of einops
- Einops paper is accepted for oral presentation at ICLR 2022 (yes, it worth reading). Talk recordings are available
Previous updates
- flax and oneflow backend added - torch.jit.script is supported for pytorch layers - powerful EinMix added to einops. [Einmix tutorial notebook](https://github.com/arogozhnikov/einops/blob/main/docs/3-einmix-layer.ipynb)In case you need convincing arguments for setting aside time to learn about einsum and einops... Tim Rocktäschel
Writing better code with PyTorch and einops đź‘Ś Andrej Karpathy
Slowly but surely, einops is seeping in to every nook and cranny of my code. If you find yourself shuffling around bazillion dimensional tensors, this might change your life Nasim Rahaman
- Installation
- Documentation
- Tutorial
- API micro-reference
- Why use einops
- Supported frameworks
- Citing
- Repository and discussions
Plain and simple:
pip install einops
Tutorials are the most convenient way to see einops
in action
- part 1: einops fundamentals
- part 2: einops for deep learning
- part 3: packing and unpacking
- part 4: improve pytorch code with einops
Kapil Sachdeva recorded a small intro to einops.
einops
has a minimalistic yet powerful API.
Three core operations provided (einops tutorial shows those cover stacking, reshape, transposition, squeeze/unsqueeze, repeat, tile, concatenate, view and numerous reductions)
from einops import rearrange, reduce, repeat
# rearrange elements according to the pattern
output_tensor = rearrange(input_tensor, 't b c -> b c t')
# combine rearrangement and reduction
output_tensor = reduce(input_tensor, 'b c (h h2) (w w2) -> b h w c', 'mean', h2=2, w2=2)
# copy along a new axis
output_tensor = repeat(input_tensor, 'h w -> h w c', c=3)
Later additions to the family are pack
and unpack
functions (better than stack/split/concatenate):
from einops import pack, unpack
# pack and unpack allow reversibly 'packing' multiple tensors into one.
# Packed tensors may be of different dimensionality:
packed, ps = pack([class_token_bc, image_tokens_bhwc, text_tokens_btc], 'b * c')
class_emb_bc, image_emb_bhwc, text_emb_btc = unpack(transformer(packed), ps, 'b * c')
Finally, einops provides einsum with a support of multi-lettered names:
from einops import einsum, pack, unpack
# einsum is like ... einsum, generic and flexible dot-product
# but 1) axes can be multi-lettered 2) pattern goes last 3) works with multiple frameworks
C = einsum(A, B, 'b t1 head c, b t2 head c -> b head t1 t2')
EinMix
is a generic linear layer, perfect for MLP Mixers and similar architectures.
Einops provides layers (einops
keeps a separate version for each framework) that reflect corresponding functions
from einops.layers.torch import Rearrange, Reduce
from einops.layers.tensorflow import Rearrange, Reduce
from einops.layers.flax import Rearrange, Reduce
from einops.layers.paddle import Rearrange, Reduce
Example of using layers within a pytorch model
Example given for pytorch, but code in other frameworks is almost identicalfrom torch.nn import Sequential, Conv2d, MaxPool2d, Linear, ReLU
from einops.layers.torch import Rearrange
model = Sequential(
...,
Conv2d(6, 16, kernel_size=5),
MaxPool2d(kernel_size=2),
# flattening without need to write forward
Rearrange('b c h w -> b (c h w)'),
Linear(16*5*5, 120),
ReLU(),
Linear(120, 10),
)
No more flatten needed!
Additionally, torch layers as those are script-able and compile-able. Operations are torch.compile-able, but not script-able due to limitations of torch.jit.script.
einops
stands for Einstein-Inspired Notation for operations
(though "Einstein operations" is more attractive and easier to remember).
Notation was loosely inspired by Einstein summation (in particular by numpy.einsum
operation).
y = x.view(x.shape[0], -1)
y = rearrange(x, 'b c h w -> b (c h w)')
While these two lines are doing the same job in some context,
the second one provides information about the input and output.
In other words, einops
focuses on interface: what is the input and output, not how the output is computed.
The next operation looks similar:
y = rearrange(x, 'time c h w -> time (c h w)')
but it gives the reader a hint: this is not an independent batch of images we are processing, but rather a sequence (video).
Semantic information makes the code easier to read and maintain.
Reconsider the same example:
y = x.view(x.shape[0], -1) # x: (batch, 256, 19, 19)
y = rearrange(x, 'b c h w -> b (c h w)')
The second line checks that the input has four dimensions, but you can also specify particular dimensions. That's opposed to just writing comments about shapes since comments don't prevent mistakes, not tested, and without code review tend to be outdated
y = x.view(x.shape[0], -1) # x: (batch, 256, 19, 19)
y = rearrange(x, 'b c h w -> b (c h w)', c=256, h=19, w=19)
Below we have at least two ways to define the depth-to-space operation
# depth-to-space
rearrange(x, 'b c (h h2) (w w2) -> b (c h2 w2) h w', h2=2, w2=2)
rearrange(x, 'b c (h h2) (w w2) -> b (h2 w2 c) h w', h2=2, w2=2)
There are at least four more ways to do it. Which one is used by the framework?
These details are ignored, since usually it makes no difference, but it can make a big difference (e.g. if you use grouped convolutions in the next stage), and you'd like to specify this in your code.
reduce(x, 'b c (x dx) -> b c x', 'max', dx=2)
reduce(x, 'b c (x dx) (y dy) -> b c x y', 'max', dx=2, dy=3)
reduce(x, 'b c (x dx) (y dy) (z dz) -> b c x y z', 'max', dx=2, dy=3, dz=4)
These examples demonstrated that we don't use separate operations for 1d/2d/3d pooling, those are all defined in a uniform way.
Space-to-depth and depth-to space are defined in many frameworks but how about width-to-height? Here you go:
rearrange(x, 'b c h (w w2) -> b c (h w2) w', w2=2)
Even simple functions are defined differently by different frameworks
y = x.flatten() # or flatten(x)
Suppose x
's shape was (3, 4, 5)
, then y
has shape ...
- numpy, pytorch, cupy, chainer, jax:
(60,)
- keras, tensorflow.layers, gluon:
(3, 20)
einops
works the same way in all frameworks.
Example: tile
vs repeat
causes lots of confusion. To copy image along width:
np.tile(image, (1, 2)) # in numpy
image.repeat(1, 2) # pytorch's repeat ~ numpy's tile
With einops you don't need to decipher which axis was repeated:
repeat(image, 'h w -> h (tile w)', tile=2) # in numpy
repeat(image, 'h w -> h (tile w)', tile=2) # in pytorch
repeat(image, 'h w -> h (tile w)', tile=2) # in tf
repeat(image, 'h w -> h (tile w)', tile=2) # in jax
repeat(image, 'h w -> h (tile w)', tile=2) # in cupy
... (etc.)
Testimonials provide users' perspective on the same question.
Einops works with ...
- numpy
- pytorch
- tensorflow
- jax
- cupy
- flax (community)
- paddle (community)
- oneflow (community)
- tinygrad (community)
Additionally, einops can be used with any framework that supports Python array API standard, which includes
- numpy >= 2.0
- MLX
- pydata/sparse >= 0.15
- quantco/ndonnx
- recent releases of jax and cupy.
- dask is supported via array-api-compat
Devcontainer is provided, this environment can be used locally, or on your server, or within github codespaces. To start with devcontainers in vs code, clone repo, and click 'Reopen in Devcontainer'.
Starting from the next version, einops will distribute tests as a part of package. To run tests:
# pip install einops
python -m einops.tests.run_tests numpy pytorch jax --pip-install
numpy pytorch jax
is an example, any subset of testable frameworks can be provided.
Every framework is tested against numpy, so it is a requirement for tests.
Specifying --pip-install
will install requirements in current virtualenv,
and should be omitted if dependencies are installed locally.
To build/test docs:
hatch run docs:serve # Serving on http://localhost:8000/
Please use the following bibtex record
@inproceedings{
rogozhnikov2022einops,
title={Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation},
author={Alex Rogozhnikov},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=oapKSVM2bcj}
}
einops
works with python 3.8 or later.