Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions python/tvm/relay/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1248,3 +1248,32 @@ def SplitArgs(max_function_args):
The registered pass for constant folding.
"""
return _ffi_api.SplitArgs(max_function_args)


def LiftDtypeTransformation():
"""
Automatic function signature transformation to fold type transformations.
For example, when a function has a tensor of type float32 as a
parameter, and the first operation on that tensor is a cast or quantize
operation, that operation is folded into the function signature --
the resultant type of the first operation is the new type of the tensor
parameter.

For this pass to fold a type transformation, the following conditions
must be met:
- The relay module must contain only a single function.
- The type transformation operation must be either a "cast"
or "qnn.quantize".
- Each function parameter is used only once
per program. There should be no structure that looks like:

in in
| \ but the following is ok: |
cast add cast

Returns
-------
ret : tvm.transform.Pass
The registered pass.
"""
return _ffi_api.LiftDtypeTransformation()
171 changes: 171 additions & 0 deletions src/relay/transforms/lift_dtype_transformation.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file src/relay/transforms/lift_dtype_transformation.cc
* \brief A pass for transforming relay graph function
* signatures such that when a function parameter is
* transformed by a subsequent cast or quantize operation,
* that operation is folded into the signature itself.
*/

#include <tvm/relay/expr.h>
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/qnn/attrs.h>
#include <tvm/relay/transform.h>

namespace tvm {
namespace relay {

/*! \brief This class transforms a relay module's function signature
* such that when a function parameter is transformed by a subsequent
* "cast" or "qnn.quantize" operation, that operation is folded into
* the signature itself. For example,
*
* def @main(%data: Tensor[(1, 3, 224, 224), float32]) {
* %0 = qnn.quantize(%data, 2f, 0, out_dtype="uint8");
* add(%0, %0)
* }
*
* would be transformed to
*
* def @main(%data: Tensor[(1, 3, 224, 224), uint8]) {
* add(%0, %0)
* }
*
* Note that now it is the user's responsibility to modify their
* input pre-processing pipeline to satisfy the new signature's
* constraints. Care should especially be taken when lifting a
* quantize transformation.
*
* For this pass to fold a type transformation, the following conditions
* must be met:
* - The relay module must contain only a single function.
* - The type transformation operation must be either a "cast"
* or "qnn.quantize".
* - Each function parameter is used only once
* per program. There should be no structure that looks like:
*
* in in
* / \ but the following is ok: |
* cast add cast
*/
class LiftDtypeTransformationRewriter : public MixedModeMutator {
protected:
Expr Rewrite_(const CallNode* pre_call_node, const Expr& post) final {
// This rewrite identifies and removes the op that transforms the
// type of a function parameter, then updates the parameter with the
// expected output dtype of the removed op.
const CallNode* post_call_node = post.as<CallNode>();
ICHECK(post_call_node) << "Expected a CallNode, but got " << post;

Expr cur_op = pre_call_node->op;
for (auto arg : pre_call_node->args) {
auto maybe_var_node = arg.as<VarNode>();
if (maybe_var_node) {
auto var = Downcast<Var>(arg);
auto it = input_transform_map_.find(var);
if (it != input_transform_map_.end()) {
// Checks that the function parameter var hasn't been an arg
// to a CallNode yet.
CHECK(!it->second) << "Function param with name '" << var->name_hint()
<< "' is fed into more than one call; "
<< "aborting transformation";

it->second = pre_call_node;

// Get the type to transform the function signature to
DataType out_dtype;
if (cur_op == cast_op_) {
auto attrs = pre_call_node->attrs.as<CastAttrs>();
out_dtype = attrs->dtype;
} else if (cur_op == quantize_op_) {
auto attrs = pre_call_node->attrs.as<qnn::QuantizeAttrs>();
out_dtype = attrs->out_dtype;
} else {
CHECK(false) << "LiftDtypeTransformation will only fold cast and "
<< "quantize type transformations";
}

// Mutate the var node type
VarNode* var_node = const_cast<VarNode*>(maybe_var_node);
const TensorTypeNode* anno = var_node->type_annotation.as<TensorTypeNode>();
auto mut_anno = const_cast<TensorTypeNode*>(anno);
auto shape = anno->shape;
mut_anno->dtype = out_dtype;

return GetRef<Expr>(var_node);
} else {
LOG(WARNING) << "Variable '" << var->name_hint() << "' encountered"
<< " but wasn't registered as a function parameter";
}
}
}

return Call(cur_op, post_call_node->args, pre_call_node->attrs, pre_call_node->type_args,
pre_call_node->span);
}

Expr VisitExpr_(const FunctionNode* node) {
function_count_++;
if (function_count_ > 1) {
CHECK(false) << "LiftDtypeTransformation is supported for only single-function graphs";
}

for (auto param : node->params) {
input_transform_map_.insert(std::pair<Var, const CallNode*>(param, NULL));
}
auto body = this->Mutate(node->body);

return Function(node->params, body, node->ret_type, node->type_params, node->attrs, node->span);
}

const Op cast_op_ = Op::Get("cast");
const Op quantize_op_ = Op::Get("qnn.quantize");

private:
// Maps function parameter to the first-encountered call node within
// the function that takes in that input.
std::map<Var, const CallNode*> input_transform_map_;

// Tracks number of functions in this program.
int function_count_;
};

Expr LiftDtypeTransformation(const Expr& expr, const IRModule& mod) {
return LiftDtypeTransformationRewriter().Mutate(expr);
}

namespace transform {

Pass LiftDtypeTransformation() {
runtime::TypedPackedFunc<Function(Function, IRModule, PassContext)> pass_func =
[=](Function f, IRModule m, PassContext pc) {
return Downcast<Function>(LiftDtypeTransformation(f, m));
};
return CreateFunctionPass(pass_func, 4, "LiftDtypeTransformation", {});
}

TVM_REGISTER_GLOBAL("relay._transform.LiftDtypeTransformation")
.set_body_typed(LiftDtypeTransformation);

} // namespace transform

} // namespace relay
} // namespace tvm
51 changes: 51 additions & 0 deletions tests/python/relay/test_lift_dype_transformation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import relay


def test_simple_cast_fold():
data = relay.var("data", shape=[1, 3, 224, 224], dtype="float32")
out = relay.cast(data, "float16")
out = relay.add(out, out)
mod = tvm.IRModule.from_expr(out)
mod = tvm.relay.transform.InferType()(mod)
mod = tvm.relay.transform.LiftDtypeTransformation()(mod)

data_fp16 = relay.var("data", shape=[1, 3, 224, 224], dtype="float16")
out = relay.add(data_fp16, data_fp16)
expected_mod = tvm.IRModule.from_expr(out)
expected_mod = tvm.relay.transform.InferType()(expected_mod)

assert tvm.ir.structural_equal(mod, expected_mod)


def test_simple_quantize_fold():
data = relay.var("data", shape=[1, 3, 224, 224], dtype="float32")
out = relay.qnn.op.quantize(data, relay.const(2.0), relay.const(0), out_dtype="uint8")
out = relay.add(out, out)

mod = tvm.IRModule.from_expr(out)
mod = tvm.relay.transform.InferType()(mod)
mod = tvm.relay.transform.LiftDtypeTransformation()(mod)

data_fp16 = relay.var("data", shape=[1, 3, 224, 224], dtype="uint8")
out = relay.add(data_fp16, data_fp16)
expected_mod = tvm.IRModule.from_expr(out)
expected_mod = tvm.relay.transform.InferType()(expected_mod)

assert tvm.ir.structural_equal(mod, expected_mod)