Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 59 additions & 4 deletions python/tvm/relay/frontend/caffe.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,21 +515,76 @@ def convert_deconv(self, op):
if weight:
kh, kw = params["kernel_size"]
weight_shape = [-1, conv_params.num_output, kh, kw]
weight_value = np.asarray(weight.data, np.float32)
if not weight.data:
if conv_params.weight_filler:
_filler = conv_params.weight_filler.value
weight_value = np.full(weight.shape.dim, _filler, np.float32)
else:
raise tvm.error.OpAttributeInvalid("At least weight_filler must be given")
else:
weight_value = np.asarray(weight.data, np.float32)
weight_value = np.reshape(weight_value, weight_shape)

# weight shape is in relay's IOHW format rn, we need it to be OIHW
weight_value = np.transpose(weight_value, [1, 0, 2, 3])
else:
raise Exception("No weight value of layer {} in caffemodel".format(op.name))
raise tvm.error.OpAttributeRequired(
"No weight value of layer {} in caffemodel".format(op.name)
)

weight_expr = self.exp_tab.new_const(weight_value, dtype="float32")
in_expr = self.exp_tab.get_expr(inputs[0])
out = _op.nn.conv2d_transpose(data=in_expr, weight=weight_expr, **params)

groups = params["groups"]
channels = params["channels"]

if bias:
bias_value = np.asarray(bias.data, np.float32)
bias_expr = self.exp_tab.new_const(bias_value, dtype="float32")
out = _op.nn.bias_add(out, bias_expr)

if groups > channels:
raise tvm.error.OpAttributeInvalid(
"Groups cannot be larger than the number of input channels"
)

if groups == channels:
inputs_expr = _op.split(in_expr, groups, axis=1)
# changing split axis to 0, according to PR #9336
weights_expr = _op.split(weight_expr, groups, axis=0)
# Preventing to create Concat layer with too many tensors(> 16)
q = groups >> 4
r = groups % 16

params["groups"] = 1
params["channels"] = 1
out = []
for lc in range(q):
_outputs = []
_inputs = [inputs_expr[i] for i in range(lc << 4, (lc << 4) + 16)]
_weights = [weights_expr[i] for i in range(lc << 4, (lc << 4) + 16)]
for (i, w) in zip(_inputs, _weights):
_out = _op.nn.conv2d_transpose(data=i, weight=w, **params)
if bias:
_out = _op.nn.bias_add(_out, bias_expr)
_outputs.append(_out)
out.append(_op.concatenate(_outputs, axis=1))
if r != 0:
_outputs = []
_inputs = [inputs_expr[i] for i in range(groups - r, groups)]
_weights = [weights_expr[i] for i in range(groups - r, groups)]
for (i, w) in zip(_inputs, _weights):
_out = _op.nn.conv2d_transpose(data=i, weight=w, **params)
if bias:
_out = _op.nn.bias_add(_out, bias_expr)
_outputs.append(_out)
out.append(_op.concatenate(_outputs, axis=1))
out = _op.concatenate(out, axis=1)
elif groups == 1:
out = _op.nn.conv2d_transpose(data=in_expr, weight=weight_expr, **params)
if bias:
out = _op.nn.bias_add(out, bias_expr)
else:
raise tvm.error.OpAttributeInvalid("Unable to handle.")
return out

def convert_slice(self, op):
Expand Down
30 changes: 30 additions & 0 deletions tests/python/frontend/caffe/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
from caffe.proto import caffe_pb2 as pb

import tvm
import tvm.testing
from tvm import relay
from tvm.contrib import utils, graph_executor
from tvm.contrib.download import download_testdata
Expand Down Expand Up @@ -451,6 +452,35 @@ def test_forward_Deconvolution():
bias_filler=dict(type="xavier"),
),
)
_test_deconvolution(
data,
convolution_param=dict(
num_output=16,
bias_term=False,
pad=0,
kernel_size=2,
stride=2,
dilation=1,
group=16,
weight_filler=dict(type="xavier"),
bias_filler=dict(type="xavier"),
),
)
data = np.random.rand(1, 100, 32, 32).astype(np.float32)
_test_deconvolution(
data,
convolution_param=dict(
num_output=100,
bias_term=False,
pad=0,
kernel_size=2,
stride=2,
dilation=1,
group=100,
weight_filler=dict(type="xavier"),
bias_filler=dict(type="xavier"),
),
)


#######################################################################
Expand Down