Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][QNN] Simulated Quantize and Dequantize #7613

Merged
merged 21 commits into from
Mar 11, 2021
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions include/tvm/relay/qnn/attrs.h
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,18 @@ struct QuantizeAttrs : public tvm::AttrsNode<QuantizeAttrs> {
}
};

struct SimulatedQuantizeAttrs : public tvm::AttrsNode<SimulatedQuantizeAttrs> {
int axis;

TVM_DECLARE_ATTRS(SimulatedQuantizeAttrs, "relay.attrs.SimulatedQuantizeAttrs") {
TVM_ATTR_FIELD(axis)
.describe(
"The output channel axis for channel wise quantization. Default value is -1,"
"which corresponds to the last axis.")
.set_default(-1);
}
};

/*! \brief Attribute for dequantize operator */
struct DequantizeAttrs : public tvm::AttrsNode<DequantizeAttrs> {
int axis;
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/relay/qnn/op/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,4 +19,4 @@
from __future__ import absolute_import as _abs
from .qnn import *
from .op import register_qnn_legalize
from . import legalizations, layout_conversions
from . import _qnn, legalizations, layout_conversions
52 changes: 52 additions & 0 deletions python/tvm/relay/qnn/op/_qnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-argument, len-as-condition
"""QNN operator feature registration"""

from tvm import topi

from ...op.op import register_compute
from ...op.op import register_injective_schedule
from ...op.op import register_pattern, OpPattern


@register_compute("qnn.simulated_quantize")
def simulated_quantize_compute(attrs, inputs, output_type):
assert len(inputs) == 4
return [
topi.nn.simulated_quantize(
inputs[0], inputs[1], inputs[2], inputs[3], axis=attrs.get_int("axis")
)
]


register_injective_schedule("qnn.simulated_quantize")
register_pattern("qnn.simulated_quantize", OpPattern.ELEMWISE)


@register_compute("qnn.simulated_dequantize")
def simulated_dequantize_compute(attrs, inputs, output_type):
assert len(inputs) == 4
return [
topi.nn.simulated_dequantize(
inputs[0], inputs[1], inputs[2], inputs[3], axis=attrs.get_int("axis")
)
]


register_injective_schedule("qnn.simulated_dequantize")
register_pattern("qnn.simulated_dequantize", OpPattern.ELEMWISE)
70 changes: 69 additions & 1 deletion python/tvm/relay/qnn/op/qnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,11 @@
"""QNN dialect operators."""

from __future__ import absolute_import as _abs
from tvm import relay
from tvm.relay.expr import Tuple, TupleWrapper
from tvm.relay.op.nn.utils import get_pad_tuple2d
from . import _make
from tvm.topi.nn.qnn import *
from ... import op as reg
from ...op import OpPattern

Expand Down Expand Up @@ -118,6 +120,39 @@ def quantize(data, output_scale, output_zero_point, axis=-1, out_dtype="int8"):
return _make.quantize(data, output_scale, output_zero_point, axis, out_dtype)


def simulated_quantize(data, output_scale, output_zero_point, axis=-1, out_dtype="int8"):
r"""Simulated Quantize op
Mimics the quantize op but has more flexibility in valid inputs and always
outputs float32. This can be useful for calibrating or training a quantized network.

Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
output_zero_point : tvm.relay.Expr
The output zero_point.
output_scale : tvm.relay.Expr
The output scale.
axis : int
The channel axis for quantization. Default value is -1 which corresponds to the last axis.
out_dtype : string or tvm.relay.Expr
A string or tensor indicating which datatype to quantize to.

Returns
-------
result : tvm.relay.Expr
The computed result.
"""
# Convert string dtype to a constant if needed.
if isinstance(out_dtype, str):
type_code = SQNN_DTYPE_TO_CODE[out_dtype]
out_dtype = relay.const(type_code, dtype="int32")
# Wrap reshapes around qnn parameter tensors to guarantee shape compatibility.
output_scale = relay.op.reshape(output_scale, [-1])
output_zero_point = relay.op.reshape(output_zero_point, [-1])
return _make.simulated_quantize(data, out_dtype, output_scale, output_zero_point, axis)


def dequantize(data, input_scale, input_zero_point, axis=-1):
r"""Dequantize op
This operator takes quantized int8 and unit8 as input and produces
Expand All @@ -127,7 +162,7 @@ def dequantize(data, input_scale, input_zero_point, axis=-1):
Parameters
----------
data : tvm.relay.Expr
The input tensor to be dequantized. Can be of type [int8, uint8].
The input tensor to be dequantized. Can be of type [int8, uint8, int32].
input_zero_point : tvm.relay.Expr
The input zero_point.
input_scale : tvm.relay.Expr
Expand All @@ -143,6 +178,39 @@ def dequantize(data, input_scale, input_zero_point, axis=-1):
return _make.dequantize(data, input_scale, input_zero_point, axis)


def simulated_dequantize(data, input_scale, input_zero_point, axis=-1, in_dtype="int8"):
r"""Simulated Quantize op
jwfromm marked this conversation as resolved.
Show resolved Hide resolved
Mimics the quantize op but has more flexibility in valid inputs and always
jwfromm marked this conversation as resolved.
Show resolved Hide resolved
outputs float32. This can be useful for calibrating or training a quantized network.

Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
input_zero_point : tvm.relay.Expr
The input zero_point.
input_scale : tvm.relay.Expr
The input scale.
axis : int
The channel axis for quantization. Default value is -1 which corresponds to the last axis.
in_dtype : string or tvm.relay.Expr
A string or tensor indicating which datatype to dequantize from.

Returns
-------
result : tvm.relay.Expr
The computed result.
"""
# Convert string dtype to a constant if needed.
if isinstance(in_dtype, str):
type_code = SQNN_DTYPE_TO_CODE[in_dtype]
in_dtype = relay.const(type_code, dtype="int32")
# Wrap reshapes around qnn parameter tensors to guarantee shape compatibility.
input_scale = relay.op.reshape(input_scale, [-1])
input_zero_point = relay.op.reshape(input_zero_point, [-1])
return _make.simulated_dequantize(data, in_dtype, input_scale, input_zero_point, axis)


def concatenate(data, input_scales, input_zero_points, output_scale, output_zero_point, axis):
"""Concatenate the quantized input tensors along the given axis.

Expand Down
1 change: 1 addition & 0 deletions python/tvm/topi/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
from .conv2d_transpose import *
from .conv1d_transpose import *
from .bnn import *
from .qnn import *
from .upsampling import *
from .local_response_norm import *
from .bitserial_conv2d import *
Expand Down
186 changes: 186 additions & 0 deletions python/tvm/topi/nn/qnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Quantized Neural Network (QNN) Operators"""
import tvm
from tvm import te, tir, topi

SQNN_FP32 = 0
SQNN_INT8 = 1
SQNN_UINT8 = 2
SQNN_INT32 = 3

SQNN_DTYPE_TO_CODE = {
"float32": SQNN_FP32,
"int8": SQNN_INT8,
"uint8": SQNN_UINT8,
"int32": SQNN_INT32,
}

SQNN_CODE_TO_DTYPE = {v: k for k, v in SQNN_DTYPE_TO_CODE.items()}
Copy link
Contributor Author

@jwfromm jwfromm Mar 9, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Note that the use of integer codes to map to datatypes is a hack since relay doesn't currently support string variables. Once it does, this can be simplified. Until then, this allows datatypes to be dynamically changed without recompilation.



@tvm.te.tag_scope(tag=topi.tag.ELEMWISE)
def simulated_quantize(data, out_dtype, output_scale=None, output_zero_point=None, axis=-1):
"""Simulated QNN quantize operator that mimics QNN outputs in floating point. The benefit
of this operator over true QNN quantize is that this operator allows dynamic datatype
selection and can operate on both per-channel and scalar scales and zero points while
QNN quantize requires both of these to be fixed at compile time.

Parameters
----------
data: tvm.te.Tensor
An N-D input tensor to the operator.

out_dtype: tvm.te.Tensor
A scalar variable that indicates which datatype to simulate quantization with. Use
SQNN_DTYPE_TO_CODE to convert a dtype string into the corresponding variable
value.

output_scale: tvm.te.Tensor, optional
A scalar tensor representing the scale to use when quantizing to integer datatypes.
When it contains more than a single value, N must match the number of channels in data.

output_zero_point: tvm.te.Tensor, optional
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Typically, the zero points are scalar. Even for asymmetric, they are scalar. This is done mostly for performance reasons. But, since these ops are generic, it's better to keep it the way that you have.

A 1-D tensor representing the zero point to use when quantizing to integer datatypes.
When it contains more than a single value, N must match the number of channels in data.

axis: int, optional
The channel axis for quantization. Default value is -1 which corresponds to the last axis.

"""
# Since all simulated outputs are in float32, we can just return the input tensor for fp32.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure I understand this. Shouldn't we still shift and scale with float inputs?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Basically act as a passthrough in case you dont want to (de)quantize?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah exactly, this is allowing us to turn off quantization / dequantization if we want to.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think we should be doing this based off dtype. As you mentioned in the type relation function, we might want to pass in something that isn't float32 and run this against it's own dtype. What's wrong with allowing the user to pass in scale=1, zp=0, dtype=data.dtype if they want to passthrough?

def _compute_fp32(value, *indices):
return value[indices]

# Simulate quantization for arbitrary integer datatypes. The computation for all datatypes is:
# Q_output = clip((round(input_tensor/output_scale) + output_zero_point),
# out_dtype::min,
# out_dtype::max)
def _compute_intn(dtype, value, *indices):
assert output_scale is not None and output_zero_point is not None
const_min = tvm.tir.min_value(dtype)
const_max = tvm.tir.max_value(dtype)
# Use indexmod to handle both scalar and per-channel QNN parameters.
scale_idx = tir.indexmod(indices[axis], topi.shape(output_scale)[0])
zp_idx = tir.indexmod(indices[axis], topi.shape(output_zero_point)[0])
return te.max(
te.min(
te.round(value[indices] / output_scale[scale_idx]) + output_zero_point[zp_idx],
const_max,
),
const_min,
)

# Use an if chain to dynamically return the proper quantization based on the input datatype.
# This allows the op to compile once but apply different quantization approaches
# using a variable datatype input.
def _dispatch_sim_quantize(value):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+1, clever trick.

fp32_value = te.compute(data.shape, lambda *indices: _compute_fp32(value, *indices))
int8_value = te.compute(
data.shape,
lambda *indices: tir.if_then_else(
out_dtype.equal(SQNN_DTYPE_TO_CODE["int8"]),
_compute_intn("int8", value, *indices),
fp32_value[indices],
),
)
uint8_value = te.compute(
data.shape,
lambda *indices: tir.if_then_else(
out_dtype.equal(SQNN_DTYPE_TO_CODE["uint8"]),
_compute_intn("uint8", value, *indices),
int8_value[indices],
),
)
int32_value = te.compute(
data.shape,
lambda *indices: tir.if_then_else(
out_dtype.equal(SQNN_DTYPE_TO_CODE["int32"]),
_compute_intn("int32", value, *indices),
uint8_value[indices],
),
)

return int32_value

return te.compute(data.shape, lambda *indices: _dispatch_sim_quantize(data)[indices])


@tvm.te.tag_scope(tag=topi.tag.ELEMWISE)
def simulated_dequantize(data, in_dtype, input_scale=None, input_zero_point=None, axis=-1):
"""Simulated QNN dequantize operator that mimics QNN outputs in floating point. The benefit
of this operator over true QNN quantize is that this operator allows dynamic datatype
jwfromm marked this conversation as resolved.
Show resolved Hide resolved
selection and can operate on both per-channel and scalar scales and zero points while
QNN quantize requires both of these to be fixed at compile time.

Parameters
----------
data: tvm.te.Tensor
An N-D input tensor to the operator.

in_dtype: tvm.te.Tensor
A scalar variable that indicates which datatype to simulate dequantization with. Use
SQNN_DTYPE_TO_CODE to convert a dtype string into the corresponding variable
value.

input_scale: tvm.te.Tensor, optional
A scalar tensor representing the scale to use when dequantizing from integer datatypes.
When it contains more than a single value, N must match the number of channels in data.

input_zero_point: tvm.te.Tensor, optional
A 1-D tensor representing the zero point to use when dequantizing from integer datatypes.
When it contains more than a single value, N must match the number of channels in data.

axis: int, optional
The channel axis for quantization. Default value is -1 which corresponds to the last axis.

"""
# Since all simulated inputs are in float32, we can just return the input tensor for fp32.
def _compute_fp32(value, *indices):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same as above, shouldn't we still shift and scale?

return value[indices]

# Simulate dequantization for arbitrary integer datatypes. The computation for all datatypes is:
# DQ_output = (input - zero_point) * scale
def _compute_intn(value, *indices):
assert input_scale is not None and input_zero_point is not None
# Use indexmod to handle both scalar and per-channel QNN parameters.
scale_idx = tir.indexmod(indices[axis], topi.shape(input_scale)[0])
zp_idx = tir.indexmod(indices[axis], topi.shape(input_zero_point)[0])
return (value[indices] - input_zero_point[zp_idx]) * input_scale[scale_idx]

# Use an if chain to dynamically return the proper dequantization based on the input datatype.
# This allows the op to compile once but apply different quantization approaches
# using a variable datatype input.
def _dispatch_sim_dequantize(value):
fp32_value = te.compute(data.shape, lambda *indices: _compute_fp32(value, *indices))
intn_condition = tvm.te.any(
in_dtype.equal(SQNN_DTYPE_TO_CODE["int8"]),
in_dtype.equal(SQNN_DTYPE_TO_CODE["uint8"]),
in_dtype.equal(SQNN_DTYPE_TO_CODE["int32"]),
)
intn_value = te.compute(
data.shape,
lambda *indices: tir.if_then_else(
intn_condition,
_compute_intn(value, *indices),
fp32_value[indices],
),
)

return intn_value

return te.compute(data.shape, lambda *indices: _dispatch_sim_dequantize(data)[indices])
Loading