Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1521,6 +1521,12 @@ def _to(self, node: fx.Node) -> relax.Var:
return self.block_builder.emit(relax.op.astype(x, dtype))
return x

def _type_as(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
other = self.env[node.args[1]]
dtype = other.struct_info.dtype
return self.block_builder.emit(relax.op.astype(x, dtype))

########## Others ##########

def _getitem(self, node: fx.Node) -> relax.Var:
Expand Down Expand Up @@ -1604,6 +1610,16 @@ def _getitem(self, node: fx.Node) -> relax.Var:
else:
assert False

def _item(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
return self.block_builder.emit(relax.op.take(x, relax.const(0, "int64"), axis=0))

def _zeros_inplace(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
output = self.block_builder.emit(relax.op.zeros_like(x))
self.env[node.args[0]] = output
return output

@abc.abstractmethod
def create_convert_map(
self,
Expand Down
15 changes: 15 additions & 0 deletions python/tvm/relax/frontend/torch/exported_program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,6 +253,14 @@ def _one_hot(self, node: fx.Node) -> relax.Var:

return self.block_builder.emit(relax.op.one_hot(x, on_value, off_value, num_classes, axis))

def _zeros(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
size = relax.ShapeExpr(args[0] if isinstance(args[0], (list, tuple)) else (args[0],))
dtype = self._convert_data_type(
node.kwargs.get("dtype", torch.get_default_dtype()), self.env
)
return self.block_builder.emit(relax.op.zeros(size, dtype))

########## Others ##########

def create_convert_map(
Expand Down Expand Up @@ -464,11 +472,18 @@ def create_convert_map(
"new_ones.default": self._new_ones,
"one_hot.default": self._one_hot,
"ones.default": self._ones,
"ones_like.default": lambda node: self.block_builder.emit(
relax.op.ones_like(self.env[node.args[0]])
),
"zero_.default": self._zeros_inplace,
"zeros.default": self._zeros,
# datatype
"to.dtype": self._to,
"to.dtype_layout": self._to,
"type_as.default": self._type_as,
# other
"getitem": self._getitem,
"item.default": self._item,
}

def create_input_vars(
Expand Down
6 changes: 6 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -786,7 +786,11 @@ def create_convert_map(
"new_ones": self._new_ones,
"ones": self._ones,
"one_hot": self._one_hot,
"ones_like": lambda node: self.block_builder.emit(
relax.op.ones_like(self.env[node.args[0]])
),
"tensor": self._tensor,
"zero_": self._zeros_inplace,
"copy_": self._inplace_copy,
# datatype
"astype": self._type,
Expand All @@ -795,10 +799,12 @@ def create_convert_map(
"is_floating_point": self._is_floating_point,
"to": self._to,
"type": self._type,
"type_as": self._type_as,
# other
"getattr": self._getattr,
"getitem": self._getitem,
"sym_size.int": self._sym_size_int,
"item": self._item,
}

def update_convert_map(self, custom_convert_map: dict):
Expand Down
111 changes: 111 additions & 0 deletions tests/python/relax/test_frontend_from_exported_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -3946,6 +3946,98 @@ def main(
verify_model(OneHot(), example_args, {}, Expected)


def test_ones_like():
class OnesLike(Module):
def forward(self, input):
return torch.ones_like(input)

@tvm.script.ir_module
class Expected:
@R.function
def main(
input: R.Tensor((128, 128), dtype="float32")
) -> R.Tuple(R.Tensor((128, 128), dtype="float32")):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float32") = R.ones_like(input, dtype="void")
gv: R.Tuple(R.Tensor((128, 128), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.rand(128, 128, dtype=torch.float32),)

verify_model(OnesLike(), example_args, {}, Expected)


def test_zero_inplace():
class ZeroInplace(Module):
def forward(self, input):
return input.zero_()

@tvm.script.ir_module
class Expected:
@R.function
def main(
input: R.Tensor((128, 128), dtype="float32")
) -> R.Tuple(R.Tensor((128, 128), dtype="float32")):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float32") = R.zeros_like(input, dtype="void")
gv: R.Tuple(R.Tensor((128, 128), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.rand(128, 128, dtype=torch.float32),)

verify_model(ZeroInplace(), example_args, {}, Expected)


def test_zeros():
class Zeros(Module):
def forward(self, input):
return torch.zeros(5, 2)

@tvm.script.ir_module
class Expected:
@R.function
def main(
input: R.Tensor((128, 128), dtype="float32")
) -> R.Tuple(R.Tensor((5, 2), dtype="float32")):
with R.dataflow():
lv: R.Tensor((5, 2), dtype="float32") = R.zeros(R.shape([5, 2]), dtype="float32")
gv: R.Tuple(R.Tensor((5, 2), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.rand(128, 128, dtype=torch.float32),)

verify_model(Zeros(), example_args, {}, Expected)


def test_type_as():
class TypeAs(Module):
def forward(self, input, other):
return input.type_as(other)

@tvm.script.ir_module
class Expected:
@R.function
def main(
input: R.Tensor((128, 128), dtype="float32"),
other: R.Tensor((128, 128), dtype="float16"),
) -> R.Tuple(R.Tensor((128, 128), dtype="float16")):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float16") = R.astype(input, dtype="float16")
gv: R.Tuple(R.Tensor((128, 128), dtype="float16")) = (lv,)
R.output(gv)
return gv

example_args = (
torch.rand(128, 128, dtype=torch.float32),
torch.rand(128, 128, dtype=torch.float16),
)

verify_model(TypeAs(), example_args, {}, Expected)


def test_select():
class Select(Module):
def forward(self, input):
Expand Down Expand Up @@ -4377,6 +4469,25 @@ def main(
verify_model(Narrow(), example_args, {}, Expected)


def test_item():
class Item(Module):
def forward(self, x):
return x.item()

@tvm.script.ir_module
class Expected:
@R.function
def main(input: R.Tensor((1,), dtype="float32")) -> R.Tuple(R.Tensor((), dtype="float32")):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.take(input, R.const(0, "int64"), axis=0)
gv: R.Tuple(R.Tensor((), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.randn(1, dtype=torch.float32),)
verify_model(Item(), example_args, {}, Expected)


def test_eye():
class Eye1(Module):
def forward(self, input):
Expand Down
89 changes: 89 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4504,6 +4504,95 @@ def main(
verify_model(EmptyLike(), [([5], "float32")], {}, Expected)


def test_ones_like():
class OnesLike(Module):
def forward(self, data):
return torch.ones_like(data)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((128, 128), dtype="float32")
) -> R.Tensor((128, 128), dtype="float32"):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float32") = R.ones_like(inp_0, dtype="void")
gv: R.Tensor((128, 128), dtype="float32") = lv
R.output(gv)
return gv

verify_model(OnesLike(), [([128, 128], "float32")], {}, Expected)


def test_zero_inplace():
class ZeroInplace(Module):
def forward(self, data):
return data.zero_()

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((128, 128), dtype="float32")
) -> R.Tensor((128, 128), dtype="float32"):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float32") = R.zeros_like(inp_0, dtype="void")
gv: R.Tensor((128, 128), dtype="float32") = lv
R.output(gv)
return gv

verify_model(ZeroInplace(), [([128, 128], "float32")], {}, Expected)


def test_type_as():
class TypeAs(Module):
def forward(self, data, other):
return data.type_as(other)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((128, 128), dtype="float16"),
inp_1: R.Tensor((128, 128), dtype="float32"),
) -> R.Tensor((128, 128), dtype="float32"):
with R.dataflow():
lv: R.Tensor((128, 128), dtype="float32") = R.astype(inp_0, dtype="float32")
gv: R.Tensor((128, 128), dtype="float32") = lv
R.output(gv)
return gv

verify_model(TypeAs(), [([128, 128], "float16"), ([128, 128], "float32")], {}, Expected)


def test_item():
class Item(Module):
def forward(self, data):
return data.item()

@tvm.script.ir_module
class Expected:
@R.function
def main(inp_0: R.Tensor((1,), dtype="float32")) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.take(inp_0, R.const(0, "int64"), axis=0)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

verify_model(
Item(),
[
(
[1],
"float32",
)
],
{},
Expected,
)


def test_numel():
class Numel(Module):
def forward(self, data):
Expand Down