Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions python/tvm/relax/backend/cuda/flashinfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,3 +415,34 @@ def gen_flashinfer_mla_module(
object_files = _compile_flashinfer_kernels(uri, source_paths, target, num_threads)
modules = _load_flashinfer_modules(object_files)
return modules


def gen_sampling_module(target: Target, num_threads: int = 8):
"""
Generate a FlashInfer module for sampling kernels.

Parameters
----------
target : Target
The target device for which the module will be compiled.
num_threads : int, optional
The number of threads to use during compilation (default is 8).

Returns
-------
List[tvm.runtime.Module]
A list of compiled static library modules for the FlashInfer sampling kernels.
"""
try:
from flashinfer.jit import ( # pylint: disable=import-outside-toplevel
gen_sampling_tvm_binding,
)
except ImportError:
raise ImportError(
"FlashInfer is not installed. Please follow instructions "
"in https://docs.flashinfer.ai to install FlashInfer."
)
uri, source_paths = gen_sampling_tvm_binding(uri="sampling")
object_files = _compile_flashinfer_kernels(uri, source_paths, target, num_threads)
modules = _load_flashinfer_modules(object_files)
return modules
93 changes: 93 additions & 0 deletions tests/python/relax/test_runtime_sampling_flashinfer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.


import random
import numpy as np
import tvm
import tvm.testing
import pytest
from tvm import relax
from tvm.contrib import utils
from typing import List


@pytest.mark.skip(reason="Requires FlashInfer enabled and proper setup")
def test_sampling():
def load_module(name: str, static_modules: List[tvm.runtime.Module]):
assert len(static_modules) > 0
if len(static_modules) == 1:
return static_modules[0]
static_mod = static_modules[0]
for mod in static_modules[1:]:
static_mod.import_module(mod)
temp = utils.tempdir()
mod_path = temp.relpath(f"{name}.so")
static_mod.export_library(mod_path)
return tvm.runtime.load_module(mod_path)

# Test configuration
batch_size = 10
vocab_size = 5
num_iterations = 1000
tol_atol = 0.02
tol_rtol = 0.05 # relative tolerance

# Probability tensor (each row sums to 1)
probs_np = np.array([[0.1, 0.2, 0.3, 0.2, 0.2] for _ in range(batch_size)], dtype="float32")

dev = tvm.cuda(0)
prob_tvm = tvm.nd.array(probs_np, device=dev)
output_tvm = tvm.nd.empty((batch_size,), "int32", device=dev)

device = tvm.cuda()
target = tvm.target.Target.from_device(device)
sampling_mod = load_module(
"flashinfer_sampling",
relax.backend.cuda.flashinfer.gen_sampling_module(
target=target,
),
)
sampling_func = sampling_mod["sampling_from_probs"]

counts = np.zeros((batch_size, vocab_size), dtype="int32")

for _ in range(num_iterations):
deterministic = False
# Generate seed and a random offset.
philox_seed = np.uint64(random.getrandbits(63))
philox_offset = np.uint64(random.getrandbits(63) % 1000)

# the kernel expects (probs, output, maybe_indices, deterministic, philox_seed, philox_offset, cuda_stream)
sampling_func(prob_tvm, output_tvm, None, deterministic, philox_seed, philox_offset, 0)

out = output_tvm.asnumpy()
for i in range(batch_size):
sampled_token = out[i]
counts[i, sampled_token] += 1

# Convert counts to frequencies.
frequencies = counts / float(num_iterations)

# For each row, check that the empirical frequency is close to the input probability.
for row in range(batch_size):
tvm.testing.assert_allclose(frequencies[row], probs_np[row], rtol=tol_rtol, atol=tol_atol)


if __name__ == "__main__":
# Run the test standalone (if not using pytest)
test_sampling()