Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1018,6 +1018,10 @@ def _empty(self, node: fx.Node) -> relax.Var:
dtype = self._convert_data_type(str(node.kwargs["dtype"]), self.env)
return self.block_builder.emit(relax.op.zeros(node.args[0], dtype))

def _empty_like(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
return self.block_builder.emit(relax.op.zeros_like(x))

def _fill(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
Expand Down
20 changes: 20 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,6 +409,11 @@ def _flatten_module(self, node: fx.Node) -> relax.Var:
end_dim = module.end_dim
return self._flatten_impl(x, start_dim, end_dim)

def _numel(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
shape = self.shape_of(x)
return relax.const(reduce(lambda x, y: x * y, [s.value for s in shape]), "int32")

def _size(self, node: fx.Node) -> relax.Expr:
x = self.env[node.args[0]]
shape = self.shape_of(x)
Expand Down Expand Up @@ -511,6 +516,18 @@ def _ones(self, node: fx.Node) -> relax.Var:
)
)

def _one_hot(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
num_classes = node.args[1] if len(node.args) > 1 else node.kwargs.get("num_classes")
if num_classes is None:
raise ValueError("num_classes not found in node.args or node.kwargs")
on_value = node.args[2] if len(node.args) > 2 else node.kwargs.get("on_value", 1)
off_value = node.args[3] if len(node.args) > 3 else node.kwargs.get("off_value", 0)
axis = node.args[4] if len(node.args) > 4 else node.kwargs.get("axis", -1)
on_value = relax.PrimValue(on_value)
off_value = relax.PrimValue(off_value)
return self.block_builder.emit(relax.op.one_hot(x, on_value, off_value, num_classes, axis))

def _tensor(self, node: fx.Node) -> relax.Var:
dtype = node.kwargs.get("dtype", None)
if isinstance(node.args[0], float):
Expand Down Expand Up @@ -735,6 +752,7 @@ def create_convert_map(
"flatten": self._flatten,
"flip": self._flip,
"gather": self._gather,
"numel": self._numel,
"permute": self._permute,
"repeat": self._repeat,
"reshape": self._reshape,
Expand All @@ -753,6 +771,7 @@ def create_convert_map(
# tensor creation
"arange": self._arange,
"empty": self._empty,
"empty_like": self._empty_like,
"fill_": self._inplace_fill,
"full": self._full,
"index_select": self._index_select,
Expand All @@ -761,6 +780,7 @@ def create_convert_map(
"masked_scatter": self._masked_scatter,
"new_ones": self._new_ones,
"ones": self._ones,
"one_hot": self._one_hot,
"tensor": self._tensor,
# datatype
"astype": self._type,
Expand Down
62 changes: 62 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4037,5 +4037,67 @@ def main(
verify_model(Take(), [([5], "float32"), ([3], "int32")], {}, Expected)


def test_one_hot():
class OneHot(Module):
def forward(self, indices):
return torch.nn.functional.one_hot(indices, num_classes=10)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5,), dtype="int32"),
) -> R.Tensor((5, 10), dtype="int64"):
with R.dataflow():
lv: R.Tensor((5, 10), dtype="int64") = R.one_hot(
inp_0, R.prim_value(1), R.prim_value(0), depth=10, axis=-1
)
gv: R.Tensor((5, 10), dtype="int64") = lv
R.output(gv)

return gv

verify_model(OneHot(), [([5], "int32")], {}, Expected)


def test_empty_like():
class EmptyLike(Module):
def forward(self, data):
return torch.empty_like(data)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5,), dtype="float32"),
) -> R.Tensor((5,), dtype="float32"):
with R.dataflow():
lv: R.Tensor((5,), dtype="float32") = R.zeros_like(inp_0)
gv: R.Tensor((5,), dtype="float32") = lv
R.output(gv)
return gv

verify_model(EmptyLike(), [([5], "float32")], {}, Expected)


def test_numel():
class Numel(Module):
def forward(self, data):
return torch.numel(data)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((), dtype="int32"):
with R.dataflow():
gv: R.Tensor((), dtype="int32") = R.const(15, "int32")
R.output(gv)
return gv

verify_model(Numel(), [([5, 3], "float32")], {}, Expected)


if __name__ == "__main__":
tvm.testing.main()