Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 55 additions & 68 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -884,6 +884,61 @@ def _unbind(self, node: fx.Node) -> relax.Var:
ret.append(self.block_builder.emit(relax.op.squeeze(split[i], axis=dim)))
return self.block_builder.emit(relax.Tuple(ret))

########## Statistical ##########

def _mean(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.mean(x, dim, keepdims=keepdim))

def _sum(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.sum(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.sum(args[0], args[1]))

########## Search ##########

def _argmax_argmin(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node):
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = node.args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(op(x, dim, keepdim))

return convert

########## DataType ##########

def _float(self, node: fx.Node) -> relax.Var:
return self.block_builder.emit(relax.op.astype(self.env[node.args[0]], "float32"))

def _half(self, node: fx.Node) -> relax.Var:
return self.block_builder.emit(relax.op.astype(self.env[node.args[0]], "float16"))

def _to(self, node: fx.Node) -> relax.Var:
import torch

x = self.env[node.args[0]]
if len(node.args) == 2:
if isinstance(node.args[1], torch.dtype):
dtype = TorchFXImporter._convert_data_type(node.args[1], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
elif "dtype" in node.kwargs:
dtype = TorchFXImporter._convert_data_type(node.kwargs["dtype"], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
return x

def _type(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dtype = TorchFXImporter._convert_data_type(node.args[1], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))

########## Creation ##########

def _arange(self, node: fx.Node) -> relax.Var:
Expand Down Expand Up @@ -1022,48 +1077,6 @@ def _full(self, node: fx.Node) -> relax.Var:
)
)

########## Statistical ##########

def _sum(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.sum(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.sum(args[0], args[1]))

def _mean(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.mean(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.mean(args[0], args[1], keepdims=keepdim))

########## DataType ##########

def _float(self, node: fx.Node) -> relax.Var:
return self.block_builder.emit(relax.op.astype(self.env[node.args[0]], "float32"))

def _half(self, node: fx.Node) -> relax.Var:
return self.block_builder.emit(relax.op.astype(self.env[node.args[0]], "float16"))

def _type(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dtype = TorchFXImporter._convert_data_type(node.args[1], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))

def _to(self, node: fx.Node) -> relax.Var:
import torch

x = self.env[node.args[0]]
if len(node.args) == 2:
if isinstance(node.args[1], torch.dtype):
dtype = TorchFXImporter._convert_data_type(node.args[1], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
elif "dtype" in node.kwargs:
dtype = TorchFXImporter._convert_data_type(node.kwargs["dtype"], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
return x

########## Manipulation ##########

def _cat(self, node: fx.Node) -> relax.Var:
Expand Down Expand Up @@ -1220,32 +1233,6 @@ def _inplace_masked_fill(self, node: fx.Node) -> relax.Var:
self.env[node.args[0]] = output
return output

########## Search ##########

def _argmax_argmin(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node):
x = self.env[node.args[0]]
dim = None
keepdims = False

if len(node.args) > 1:
dim = node.args[1]
if len(node.args) > 2:
keepdims = node.args[2]

if "dim" in node.kwargs:
dim = node.kwargs["dim"]
if "keepdim" in node.kwargs:
keepdims = node.kwargs["keepdim"]
if "keepdims" in node.kwargs:
keepdims = node.kwargs["keepdims"]

return self.block_builder.emit(op(x, dim, keepdims))

return convert

########## Neural Network ##########

def _softmax(self, node: fx.Node) -> relax.Var:
Expand Down