Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions src/relay/qnn/op/avg_pool2d.cc
Original file line number Diff line number Diff line change
Expand Up @@ -132,9 +132,11 @@ InferCorrectLayoutOutput QnnAvgPoolInferCorrectLayout(const Attrs& attrs,
auto avgpool_new_layouts =
PoolInferCorrectLayout<AvgPool2DAttrs>(attrs, new_in_layouts, old_in_layouts, old_in_types);

// Scales and zero points are scalars, use the "undef" layout for them.
Array<Layout> input_layouts = {avgpool_new_layouts->input_layouts[0], Layout::Undef(),
Layout::Undef(), Layout::Undef(), Layout::Undef()};
// Scales and zero points are scalars, the layouts of these tensors can be treated as channel
// layout.
Layout channel_layout = Layout("C");
Array<Layout> input_layouts = {avgpool_new_layouts->input_layouts[0], channel_layout,
channel_layout, channel_layout, channel_layout};
Array<Layout> output_layouts = avgpool_new_layouts->output_layouts;
return InferCorrectLayoutOutput(input_layouts, output_layouts, attrs);
}
Expand Down
79 changes: 79 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -1542,6 +1542,85 @@ def expected():
tvm.ir.assert_structural_equal(a, b)


def test_qnn_conv_avgpool_2d_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
y = relay.qnn.op.conv2d(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
)
y = relay.cast(y, "int8")
y = relay.qnn.op.avg_pool2d(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
layout="NHWC",
out_layout="NHWC",
pool_size=(3, 3),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
)
y = relay.Function([x, weight], y)
return y

def expected():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
x = relay.layout_transform(x, "NHWC", "NCHW")
weight = relay.layout_transform(weight, "HWIO", "OIHW")
y = relay.qnn.op.conv2d(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
)
y = relay.cast(y, "int8")
y = relay.qnn.op.avg_pool2d(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
layout="NCHW",
out_layout="NCHW",
pool_size=(3, 3),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
)
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(relay.analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(
a, transform.ConvertLayout({"qnn.conv2d": ["NCHW", "default"], "qnn.avg_pool2d": ["NCHW"]})
)
b = run_opt_pass(expected(), transform.InferType())

tvm.ir.assert_structural_equal(a, b)


def test_conv_roi_align_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
Expand Down