Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion python/tvm/topi/cuda/nms.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,9 @@ def cuda_atomic_add_rule(op):
def opencl_atomic_add_rule(op):
if op.dtype == "int32":
return tvm.tir.call_pure_extern("int32", "atomic_add", op.args[0], op.args[1])
raise RuntimeError("only support int32")
elif op.dtype == "float32":
return tvm.tir.call_pure_extern("float32", "atomic_add", op.args[0], op.args[1])
raise RuntimeError("only support int32, float32")


register_intrin_lowering("tir.atomic_add", target="cuda", f=cuda_atomic_add_rule, level=99)
Expand Down
52 changes: 49 additions & 3 deletions src/target/source/codegen_opencl.cc
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,16 @@ std::string CodeGenOpenCL::Finish() {
if (enable_atomics_) {
decl_stream << "#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n"
"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n\n";
decl_stream << "__inline float atomic_add_float_emu(volatile __global float* sum, const float "
"toAdd) {\n"
"float next_value = 0;"
"float prev_value = 0;"
"do {\n"
"prev_value =*(sum);\n"
"next_value =prev_value + toAdd;\n"
"} while(atomic_cmpxchg((volatile global int *)(sum), *((int*)&prev_value), "
"*((int*)&next_value)) != *((int*)&prev_value));\n"
"return next_value;\n}\n";
}

// Enable OpenCL 1.2 sampler-less texture reads, but utilize
Expand Down Expand Up @@ -458,13 +468,21 @@ void CodeGenOpenCL::VisitExpr_(const CallNode* op, std::ostream& os) {
this->PrintExpr(op->args.back(), os);
os << "]";
}
} else if (op->op.same_as(builtin_call_extern_)) {
} else if (op->op.same_as(builtin_call_extern_) || op->op.same_as(builtin_call_pure_extern_)) {
auto func = Downcast<StringImm>(op->args[0]);
// Enable atomics extension if used.
if (func->value == "atomic_add") {
if (func->value == "atomic_add" && op->dtype.is_float()) {
enable_atomics_ = true;
this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), "atomic_add_float_emu", op->args, true,
os);
} else if (func->value == "nearbyint") {
this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), "round", op->args, true, os);
} else {
if (func->value == "atomic_add") {
enable_atomics_ = true;
}
CodeGenC::VisitExpr_(op, os);
}
CodeGenC::VisitExpr_(op, os);
} else {
CodeGenC::VisitExpr_(op, os);
}
Expand Down Expand Up @@ -534,6 +552,34 @@ void CodeGenOpenCL::VisitExpr_(const MaxNode* op, std::ostream& os) {
PrintBinaryExpr(op, "max", os, this);
}

void CodeGenOpenCL::VisitExpr_(const ModNode* op, std::ostream& os) { // NOLINT(*)
std::string opstr;
if (op->dtype.is_int() || op->dtype.is_uint()) {
opstr = "%";
} else {
ICHECK(op->dtype.is_float()) << "Expected floating point or integer dtype in Mod, but got "
<< op->dtype;
opstr = "fmod";
}
if (op->dtype.lanes() == 1) {
if (isalpha(opstr.c_str()[0])) {
os << opstr.c_str() << '(';
this->PrintExpr(op->a, os);
os << ", ";
this->PrintExpr(op->b, os);
os << ')';
} else {
os << '(';
this->PrintExpr(op->a, os);
os << ' ' << opstr.c_str() << ' ';
this->PrintExpr(op->b, os);
os << ')';
}
} else {
this->PrintVecBinaryOp(opstr.c_str(), op->dtype, op->a, op->b, os);
}
}

void CodeGenOpenCL::VisitExpr_(const AndNode* op, std::ostream& os) {
std::ostringstream oss;
os << "(";
Expand Down
1 change: 1 addition & 0 deletions src/target/source/codegen_opencl.h
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@ class CodeGenOpenCL final : public CodeGenC {
void VisitExpr_(const AndNode* op, std::ostream& os) final;
void VisitExpr_(const OrNode* op, std::ostream& os) final;
void VisitExpr_(const SelectNode* op, std::ostream& os) final;
void VisitExpr_(const ModNode* op, std::ostream& os) final;

private:
// whether enable fp16 and fp64 extension
Expand Down
73 changes: 73 additions & 0 deletions tests/python/relay/opencl_texture/test_relay_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import re
import tvm
import numpy as np
from tvm import relay
from tvm.relay import testing
from tvm.contrib import utils
from utils.adreno_utils import gpu_preprocess, build_run_compare, build_run_compare_vm


executor_type = tvm.testing.parameter("ge", "vm")
dtype = tvm.testing.parameter("float32")


@tvm.testing.requires_opencl
@tvm.testing.parametrize_targets("opencl -device=adreno")
def test_mod(remote, target, executor_type, dtype):
# NCHW
input_shape = (1, 25, 38, 64)
A = relay.var("data", shape=input_shape, dtype=dtype)
scale = relay.const(2.0, dtype=dtype)
op = relay.mod(A, scale)
mod = relay.Function([A], op)

if executor_type == "ge":
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target)
else:
build_run_compare_vm(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target)


@tvm.testing.requires_opencl
@tvm.testing.parametrize_targets("opencl -device=adreno")
def test_scatter_nd_add(remote, target, executor_type, dtype):
# NCHW

A = relay.var("data", shape=(6, 30, 30, 256), dtype=dtype)
indices = relay.const(tvm.nd.array(np.random.randint(0, 1, (2, 6, 30, 30))), dtype="int64")
update = relay.const(
tvm.nd.array(np.random.uniform(-1, 1, size=(50, 50, 256)).astype(dtype)), dtype=dtype
)
op = relay.scatter_nd(update, indices, A, mode="add")
mod = relay.Function([A], op)
shape_dict = {
"data": (6, 30, 30, 256),
}
dtype_dict = {
"data": dtype,
}

if executor_type == "ge":
build_run_compare(remote, mod, {}, shape_dict, dtype_dict, target)
else:
build_run_compare_vm(remote, mod, {}, shape_dict, dtype_dict, target)


if __name__ == "__main__":
tvm.testing.main()