-
Notifications
You must be signed in to change notification settings - Fork 3.7k
[Unity][DistIR] LowerDistIR #16169
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
[Unity][DistIR] LowerDistIR #16169
Changes from 5 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,271 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one | ||
| * or more contributor license agreements. See the NOTICE file | ||
| * distributed with this work for additional information | ||
| * regarding copyright ownership. The ASF licenses this file | ||
| * to you under the Apache License, Version 2.0 (the | ||
| * "License"); you may not use this file except in compliance | ||
| * with the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, | ||
| * software distributed under the License is distributed on an | ||
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| * KIND, either express or implied. See the License for the | ||
| * specific language governing permissions and limitations | ||
| * under the License. | ||
| */ | ||
|
|
||
| /*! | ||
| * \file tvm/relax/distributed/transform/lower_distir.cc | ||
| * \brief Pass for lowering DistIR into Relax | ||
| * This pass assumes all the TensorIR functions are in local view, | ||
| * so the pass only handles sharding relax tensor shape and | ||
| * inserting necessary broadcast and scatter for inputs. | ||
| */ | ||
|
|
||
| #include <tvm/relax/attrs/ccl.h> | ||
| #include <tvm/relax/distributed/axis_group_graph.h> | ||
| #include <tvm/relax/distributed/transform.h> | ||
| #include <tvm/relax/expr_functor.h> | ||
| #include <tvm/tir/stmt_functor.h> | ||
|
|
||
| #include "../../../tir/schedule/transform.h" | ||
| #include "../../op/ccl/ccl.h" | ||
| #include "../../op/tensor/manipulate.h" | ||
| #include "utils.h" | ||
|
|
||
| namespace tvm { | ||
| namespace relax { | ||
| namespace distributed { | ||
|
|
||
| class DistIRSharder : public ExprMutator { | ||
| public: | ||
| static IRModule LowerDistIR(IRModule mod) { return DistIRSharder(mod).Lower(); } | ||
|
|
||
| private: | ||
| explicit DistIRSharder(IRModule mod) : ExprMutator(mod) {} | ||
|
|
||
| IRModule Lower() { | ||
| auto mod = builder_->GetContextIRModule(); | ||
| for (const auto& [gv, base_func] : mod->functions) { | ||
| const auto* func_ = base_func.as<FunctionNode>(); | ||
| if (func_ == nullptr || !IsDistIRFunc(GetRef<Function>(func_))) { | ||
| continue; | ||
| } | ||
| Function func = RewriteFunction(GetRef<Function>(func_)); | ||
| builder_->UpdateFunction(gv, func); | ||
| } | ||
| return builder_->GetContextIRModule(); | ||
| } | ||
|
|
||
| ShapeExpr ShardShape(ShapeExpr orig_shape, DeviceMesh device_mesh, Placement placement) { | ||
| ShapeTuple device_mesh_shape = device_mesh->shape; | ||
| Array<PrimExpr> new_tensor_shape_value = orig_shape->values; | ||
| for (int i = 0; i < device_mesh_shape.size(); i++) { | ||
| if (placement->dim_specs[i]->kind == PlacementSpecKind::kSharding) { | ||
| int shard_size = device_mesh_shape[i]; | ||
| int axis = placement->dim_specs[i]->axis; | ||
| new_tensor_shape_value.Set(axis, floordiv(orig_shape->values[axis], shard_size)); | ||
| } | ||
| } | ||
| return ShapeExpr(new_tensor_shape_value); | ||
| } | ||
|
|
||
| TensorStructInfo ShardDTensorSinfo(DTensorStructInfo orig_sinfo) { | ||
| TensorStructInfo tensor_sinfo = orig_sinfo->tensor_sinfo; | ||
| ICHECK(tensor_sinfo->shape); | ||
| const auto* orig_shape = tensor_sinfo->shape.as<ShapeExprNode>(); | ||
| auto new_tensor_sinfo = make_object<TensorStructInfoNode>(*tensor_sinfo.get()); | ||
| new_tensor_sinfo->shape = | ||
| ShardShape(GetRef<ShapeExpr>(orig_shape), orig_sinfo->device_mesh, orig_sinfo->placement); | ||
| return TensorStructInfo(new_tensor_sinfo); | ||
| } | ||
|
|
||
| StructInfo ConvertSinfo(StructInfo orig_sinfo, bool shard_shape) { | ||
| if (const auto* dtensor_sinfo = orig_sinfo.as<DTensorStructInfoNode>()) { | ||
| if (shard_shape) { | ||
| return ShardDTensorSinfo(GetRef<DTensorStructInfo>(dtensor_sinfo)); | ||
| } else { | ||
| return dtensor_sinfo->tensor_sinfo; | ||
| } | ||
| } else if (const auto* tuple_sinfo = orig_sinfo.as<TupleStructInfoNode>()) { | ||
| Array<StructInfo> new_fields; | ||
| for (const auto& field_sinfo : tuple_sinfo->fields) { | ||
| if (const auto* dtensor_sinfo = field_sinfo.as<DTensorStructInfoNode>()) { | ||
| if (shard_shape) { | ||
| new_fields.push_back(ShardDTensorSinfo(GetRef<DTensorStructInfo>(dtensor_sinfo))); | ||
| } else { | ||
| new_fields.push_back(dtensor_sinfo->tensor_sinfo); | ||
| } | ||
| } else { | ||
| new_fields.push_back(field_sinfo); | ||
| } | ||
| } | ||
| return TupleStructInfo(new_fields); | ||
| } else { | ||
| return orig_sinfo; | ||
| } | ||
| } | ||
|
|
||
| Expr ShardInputParamTensorAndConstant(Expr input) { | ||
| ICHECK(input->struct_info_); | ||
| StructInfo old_sinfo = GetStructInfo(input); | ||
| StructInfo new_sinfo = ConvertSinfo(old_sinfo, false); | ||
| if (const auto* var = input.as<VarNode>()) { | ||
| Var new_param(var->name_hint(), new_sinfo); | ||
| return new_param; | ||
| } else if (const auto* constant = input.as<ConstantNode>()) { | ||
| for (const auto& spec : Downcast<DTensorStructInfo>(old_sinfo)->placement->dim_specs) { | ||
| ICHECK(spec->kind == PlacementSpecKind::kReplica); | ||
| } | ||
| Constant new_constant(constant->data, new_sinfo); | ||
| return new_constant; | ||
| } else { | ||
| LOG(FATAL) << "Cannot shard tensor which is not Var or Constant: " << input; | ||
| throw; | ||
| } | ||
| } | ||
|
|
||
| void EmitBroadcastOrScatter(Expr old_expr, Expr new_expr, DTensorStructInfo dtensor_sinfo) { | ||
| // FIXME: this is a hack that only works for 1d device mesh | ||
| ICHECK(dtensor_sinfo->device_mesh->shape.size() == 1); | ||
| PlacementSpec sharding_spec = dtensor_sinfo->placement->dim_specs[0]; | ||
| if (sharding_spec->kind == PlacementSpecKind::kReplica) { | ||
| Var new_var = builder_->Emit(broadcast_from_worker0(new_expr)); | ||
| if (const auto* var = old_expr.as<VarNode>()) { | ||
| var_remap_[var->vid] = new_var; | ||
| } else { | ||
| tuple_getitem_remap_[Downcast<TupleGetItem>(old_expr)] = new_var; | ||
| } | ||
| } else if (sharding_spec->kind == PlacementSpecKind::kSharding) { | ||
| Var scatter_var = builder_->Emit(scatter_from_worker0( | ||
| new_expr, dtensor_sinfo->device_mesh->shape[0], sharding_spec->axis)); | ||
| if (const auto* var = old_expr.as<VarNode>()) { | ||
| var_remap_[var->vid] = scatter_var; | ||
| } else { | ||
| tuple_getitem_remap_[Downcast<TupleGetItem>(old_expr)] = scatter_var; | ||
| } | ||
| } else { | ||
| LOG(FATAL) << "Unsupported placement spec"; | ||
| } | ||
| } | ||
|
|
||
| void InputPreprocessing() { | ||
| for (int i = 0; i < static_cast<int>(func_->params.size()); i++) { | ||
| Var param = func_->params[i]; | ||
| if (const auto* dtensor_sinfo = GetStructInfoAs<DTensorStructInfoNode>(param)) { | ||
| EmitBroadcastOrScatter(param, new_params_[i], GetRef<DTensorStructInfo>(dtensor_sinfo)); | ||
| } else if (const auto* tuple_sinfo = GetStructInfoAs<TupleStructInfoNode>(param)) { | ||
| for (int j = 0; j < static_cast<int>(tuple_sinfo->fields.size()); j++) { | ||
| if (const auto* dtensor_sinfo = tuple_sinfo->fields[j].as<DTensorStructInfoNode>()) { | ||
| EmitBroadcastOrScatter(TupleGetItem(param, j), TupleGetItem(new_params_[i], j), | ||
| GetRef<DTensorStructInfo>(dtensor_sinfo)); | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
| Function RewriteFunction(Function func) { | ||
| Array<Var> new_params; | ||
| for (const Var& var : func->params) { | ||
| Var new_param = Downcast<Var>(ShardInputParamTensorAndConstant(var)); | ||
| var_remap_[var->vid] = new_param; | ||
| new_params.push_back(new_param); | ||
| } | ||
| func_ = func; | ||
| new_params_ = new_params; | ||
| auto new_body = VisitWithNewScope(func->body, new_params); | ||
| Function new_func(new_params, new_body, NullOpt, func->is_pure, func->attrs); | ||
| return new_func; | ||
| } | ||
|
|
||
| void VisitBinding_(const VarBindingNode* binding, const TupleGetItemNode* val) { | ||
| if (tuple_getitem_remap_.count(GetRef<TupleGetItem>(val))) { | ||
| var_remap_[binding->var->vid] = tuple_getitem_remap_[GetRef<TupleGetItem>(val)]; | ||
| } else { | ||
| ExprMutator::VisitBinding_(binding, val); | ||
| } | ||
| } | ||
|
|
||
| BindingBlock VisitBindingBlock_(const BindingBlockNode* block) { | ||
| builder_->BeginBindingBlock(); | ||
| InputPreprocessing(); | ||
| for (Binding binding : block->bindings) { | ||
| this->VisitBinding(binding); | ||
| } | ||
| return builder_->EndBlock(); | ||
| } | ||
|
|
||
| BindingBlock VisitBindingBlock_(const DataflowBlockNode* block) { | ||
| builder_->BeginDataflowBlock(); | ||
| InputPreprocessing(); | ||
| for (auto binding : block->bindings) { | ||
| this->VisitBinding(binding); | ||
| } | ||
| return builder_->EndBlock(); | ||
| } | ||
|
|
||
| Call HandleSpecialCaseinDTensorLowering(const CallNode* call, Var binding_var) { | ||
| static Op reshape_op = Op::Get("relax.reshape"); | ||
| static Op call_tir_op = Op::Get("relax.call_tir"); | ||
| static Op call_tir_local_view_op = Op::Get("relax.dist.call_tir_local_view"); | ||
| if (call->op.same_as(reshape_op)) { | ||
| ICHECK(call->args[1].as<ShapeExprNode>()); | ||
| const auto* out_sinfo = GetStructInfoAs<DTensorStructInfoNode>(binding_var); | ||
| ICHECK(out_sinfo); | ||
| auto new_call_node = make_object<CallNode>(*call); | ||
| new_call_node->args.Set(1, ShardShape(Downcast<ShapeExpr>(call->args[1]), | ||
| out_sinfo->device_mesh, out_sinfo->placement)); | ||
| return Call(new_call_node); | ||
| } else if (call->op.same_as(call_tir_local_view_op)) { | ||
| auto new_call_node = make_object<CallNode>(*call); | ||
| new_call_node->op = call_tir_op; | ||
| new_call_node->sinfo_args = {ConvertSinfo(GetStructInfo(binding_var), true)}; | ||
| return Call(new_call_node); | ||
| } else if (call->op.same_as(call_tir_op)) { | ||
| LOG(FATAL) << "call_tir should be lowered to call_tir_local_view before lowering to relax"; | ||
| } else if (const auto* extern_func = call->op.as<ExternFuncNode>()) { | ||
| auto new_call_node = make_object<CallNode>(*call); | ||
| if (extern_func->global_symbol == "vm.builtin.distributed.attention_kv_cache_append") { | ||
| new_call_node->op = ExternFunc("vm.builtin.attention_kv_cache_append"); | ||
| } else if (extern_func->global_symbol == "vm.builtin.distributed.attention_kv_cache_view") { | ||
| new_call_node->op = ExternFunc("vm.builtin.attention_kv_cache_view"); | ||
| auto orig_shape = Downcast<ShapeExpr>(call->args[1]); | ||
| const auto* out_sinfo = GetStructInfoAs<DTensorStructInfoNode>(binding_var); | ||
| ICHECK(out_sinfo); | ||
| ShapeExpr new_shape = ShardShape(orig_shape, out_sinfo->device_mesh, out_sinfo->placement); | ||
| new_call_node->args.Set(1, new_shape); | ||
| new_call_node->sinfo_args = {TensorStructInfo(new_shape, out_sinfo->tensor_sinfo->dtype)}; | ||
| } | ||
| return Call(new_call_node); | ||
| } | ||
| return GetRef<Call>(call); | ||
| } | ||
|
|
||
| void VisitBinding_(const VarBindingNode* binding, const CallNode* val) { | ||
| Call new_call = | ||
| Downcast<Call>(this->VisitExpr(HandleSpecialCaseinDTensorLowering(val, binding->var))); | ||
| ReEmitBinding(binding, builder_->Normalize(new_call)); | ||
| } | ||
|
|
||
| Function func_; | ||
| Array<Var> new_params_; | ||
| std::unordered_map<TupleGetItem, Var, StructuralHash, StructuralEqual> tuple_getitem_remap_; | ||
| }; | ||
|
|
||
| namespace transform { | ||
|
|
||
| Pass LowerDistIR() { | ||
| runtime::TypedPackedFunc<IRModule(IRModule, PassContext)> pass_func = | ||
| [=](IRModule m, PassContext pc) { return DistIRSharder::LowerDistIR(m); }; | ||
| return CreateModulePass(pass_func, 1, "LowerDistIR", {}); | ||
| } | ||
| TVM_REGISTER_GLOBAL("relax.distributed.transform.LowerDistIR").set_body_typed(LowerDistIR); | ||
| } // namespace transform | ||
|
|
||
| } // namespace distributed | ||
| } // namespace relax | ||
| } // namespace tvm | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.