Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 102 additions & 3 deletions python/tvm/contrib/hexagon/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,16 @@

import tvm
from tvm import relay
from tvm.relay.dataflow_pattern import DFPatternCallback, rewrite, wildcard
from tvm.relay.dataflow_pattern import is_constant, is_op, is_tuple
from tvm.relay.dataflow_pattern import (
DFPatternCallback,
is_constant,
is_op,
is_tuple,
rewrite,
wildcard,
)
from tvm.relay.expr import Call

from ..._ffi.registry import register_func

### VTCM
Expand All @@ -43,7 +51,6 @@ def mem_info_vtcm():


def lower_vtcm_(get_alloc, get_free, def_align, func, mod, ctx): # pylint: disable=unused-argument

"""Generic VTCM allocation

Parameters
Expand Down Expand Up @@ -311,3 +318,95 @@ def remove_empty_pad(mod):
"""Remove the empty pad operator."""
mod["main"] = rewrite(remove_empty_pad_callback(), mod["main"])
return mod


class simplify_qnn_concat_in_func(DFPatternCallback):

"""
Propagate qnn.concat's quantization params to its inputs,
and try to avoid redundant requantization while doing so.

Replace
def @main(%q1: Tensor[(1, 64, 35, 35), uint8],
%q2: Tensor[(1, 64, 35, 35), uint8], %q3: Tensor[(1, 32, 35, 35), uint8]) {
%0 = nn.max_pool2d(%q1, pool_size=[3, 3], padding=[1, 1, 1, 1], layout="NHWC");
%1 = qnn.requantize(%q2, 0.000109401f, 0, 0.00345f, 0, axis=1, out_dtype="uint8");
%2 = (%0, %1, %q3);
%3 = (0.0425042f, 0.00345f, 0.0486874f);
%4 = (0, 0, 0);
qnn.concatenate(%2, %3, %4, 0.0486874f, 0, axis=1)
}

with

def @main(%q1: Tensor[(1, 64, 35, 35), uint8],
%q2: Tensor[(1, 64, 35, 35), uint8], %q3: Tensor[(1, 32, 35, 35), uint8]) {
%0 = nn.max_pool2d(%q1, pool_size=[3, 3], padding=[1, 1, 1, 1], layout="NHWC");
%1 = qnn.requantize(%0, 0.0425042f, 0, 0.0486874f, 0, axis=1, out_dtype="uint8");
%2 = qnn.requantize(%q2, 0.000109401f, 0, 0.0486874f, 0, axis=1, out_dtype="uint8");
%3 = (%1, %2, %q3);
concatenate(%3, axis=1)
}
"""

def __init__(self):
super(simplify_qnn_concat_in_func, self).__init__()
self.qvals = wildcard()
self.scales = wildcard()
self.zps = wildcard()
self.out_scale = wildcard()
self.out_zp = wildcard()
self.pattern = is_op("qnn.concatenate")(
self.qvals, self.scales, self.zps, self.out_scale, self.out_zp
)

def callback(self, pre, post, node_map):
in_qvals = node_map[self.qvals][0]
in_scales = node_map[self.scales][0]
in_zps = node_map[self.zps][0]
new_qvals = []
for i in range(len(in_qvals)):
new_requant_args = []
# TODO Generalize for all qnn ops
if isinstance(in_qvals[i], Call) and (in_qvals[i].op.name == "qnn.requantize"):
# propagate scale/zp of qnn.concat to this requantize op
for j in range(3):
new_requant_args.append(in_qvals[i].args[j])
new_requant_args += [node_map[self.out_scale][0], node_map[self.out_zp][0]]
new_qvals.append(relay.qnn.op.requantize(*new_requant_args, **(in_qvals[i].attrs)))
else:
# simply create a new requantize op if there is a change in quantization params
# if not, just retain the old qval
if (in_scales[i] == node_map[self.out_scale][0]) and (
in_zps[i] == node_map[self.out_zp][0]
):
new_qvals.append(in_qvals[i])
else:
new_requant_args += [
in_qvals[i],
in_scales[i],
in_zps[i],
node_map[self.out_scale][0],
node_map[self.out_zp][0],
]
new_qvals.append(
relay.qnn.op.requantize(
*new_requant_args,
axis=post.attrs["axis"],
out_dtype=post.checked_type.dtype,
)
)

new_op = relay.op.concatenate(
new_qvals,
node_map[self.pattern][0].attrs["axis"],
)
return new_op


# Right now context is ignored
@tvm.transform.module_pass(opt_level=1)
def simplify_qnn_concat(mod, _=None):
for global_var in mod.functions.keys():
mod[global_var] = rewrite(simplify_qnn_concat_in_func(), mod[global_var])
return mod
101 changes: 101 additions & 0 deletions tests/python/contrib/test_hexagon/test_relay_simplify_qnn_concat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-wildcard-import, invalid-name

"""
Test hexagon relay transform - qnn.concat optimization
"""
import tvm
from tvm import relay, testing
from tvm.contrib.hexagon.transform import simplify_qnn_concat


def get_test_module():
"""Creates a test relay module and returns it."""
q1 = relay.var("q1", shape=(1, 64, 35, 35), dtype="uint8")
q2 = relay.var("q2", shape=(1, 64, 35, 35), dtype="uint8")
q3 = relay.var("q3", shape=(1, 32, 35, 35), dtype="uint8")
s2 = relay.const(0.000109401, dtype="float32")
s3 = relay.const(0.0486874, dtype="float32")
s4 = relay.const(0.0425042, dtype="float32")
s5 = relay.const(0.00345, dtype="float32")
z1 = relay.const(0, dtype="int32")
r1 = relay.op.nn.max_pool2d(
q1,
pool_size=[3, 3],
strides=[1, 1],
padding=[1, 1],
dilation=[1, 1],
ceil_mode=False,
layout="NHWC",
)
r2 = relay.qnn.op.requantize(q2, s2, z1, s5, z1, axis=1, out_dtype="uint8")
q_tuple = relay.expr.Tuple([r1, r2, q3])
s_tuple = relay.expr.Tuple([s4, s5, s3])
z_tuple = relay.expr.Tuple([z1, z1, z1])
graph = relay.qnn.op.concatenate(q_tuple, s_tuple, z_tuple, s3, z1, axis=1)

func = relay.Function(relay.analysis.free_vars(graph), graph)
mod = tvm.IRModule.from_expr(func)
return mod


def get_expected_output_module():
"""Returns manually created expected output module."""
out_q1 = relay.var("q1", shape=(1, 64, 35, 35), dtype="uint8")
out_q2 = relay.var("q2", shape=(1, 64, 35, 35), dtype="uint8")
out_q3 = relay.var("q3", shape=(1, 32, 35, 35), dtype="uint8")
out_s2 = relay.const(0.000109401, dtype="float32")
out_s3 = relay.const(0.0486874, dtype="float32")
out_s4 = relay.const(0.0425042, dtype="float32")
out_z1 = relay.const(0, dtype="int32")
nn_max_pool = relay.op.nn.max_pool2d(
out_q1,
pool_size=[3, 3],
strides=[1, 1],
padding=[1, 1],
dilation=[1, 1],
ceil_mode=False,
layout="NHWC",
)
out_r1 = relay.qnn.op.requantize(
nn_max_pool, out_s4, out_z1, out_s3, out_z1, axis=1, out_dtype="uint8"
)
out_r2 = relay.qnn.op.requantize(
out_q2, out_s2, out_z1, out_s3, out_z1, axis=1, out_dtype="uint8"
)
out_q_tuple = relay.expr.Tuple([out_r1, out_r2, out_q3])
out_graph = relay.op.concatenate(out_q_tuple, axis=1)

out_func = relay.Function(relay.analysis.free_vars(out_graph), out_graph)
out_mod = tvm.IRModule.from_expr(out_func)
return out_mod


def test_simplify_qnn_concat():
mod = get_test_module()
mod = tvm.relay.transform.InferType()(mod)
mod = simplify_qnn_concat(mod)

out_mod = get_expected_output_module()
out_mod = tvm.relay.transform.InferType()(out_mod)

assert tvm.ir.structural_equal(mod["main"], out_mod["main"])


if __name__ == "__main__":
testing.main()