Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 32 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -932,6 +932,35 @@ def cross_entropy_loss_with_logits(self, inputs, input_types):
assert weights is None, "weight not supported in cross_entropy_loss"
return _op.nn.cross_entropy_with_logits(_op.nn.log_softmax(input), target)

def l1_loss(self, inputs, input_types):
assert len(inputs) == 3
[predictions, targets, reduction] = inputs
delta = _op.abs(_op.subtract(predictions, targets))
if reduction == 0:
# reduction = "none"
return delta
elif reduction == 1:
# reduction = "mean"
return _op.mean(delta)
else:
# reduction = "sum"
return _op.sum(delta)

def mse_loss(self, inputs, input_types):
assert len(inputs) == 3
[predictions, targets, reduction] = inputs
delta = _op.subtract(predictions, targets)
delta = _op.power(delta, _expr.const(2, input_types[0]))
if reduction == 0:
# reduction = "none"
return delta
elif reduction == 1:
# reduction = "mean"
return _op.mean(delta)
else:
# reduction = "sum"
return _op.sum(delta)

def hard_sigmoid(self, inputs, input_types):
def _relu6(x):
return _op.tensor.clip(x, 0.0, 6.0)
Expand Down Expand Up @@ -3200,7 +3229,6 @@ def create_convert_map(self):
"aten::silu": self.silu,
"aten::glu": self.glu,
"aten::log_sigmoid": self.log_sigmoid,
"aten::cross_entropy_loss": self.cross_entropy_loss_with_logits,
"aten::adaptive_avg_pool1d": functools.partial(
self.adaptive_avg_pool, _op.nn.adaptive_avg_pool1d
),
Expand Down Expand Up @@ -3374,6 +3402,9 @@ def create_convert_map(self):
"aten::nll_loss": self.nll_loss,
"aten::nll_loss2d": self.nll_loss,
"aten::nll_loss_nd": self.nll_loss,
"aten::cross_entropy_loss": self.cross_entropy_loss_with_logits,
"aten::l1_loss": self.l1_loss,
"aten::mse_loss": self.mse_loss,
"aten::flip": self.flip,
"aten::gru": self.gru,
"aten::lstm": self.lstm,
Expand Down
4 changes: 2 additions & 2 deletions python/tvm/topi/nn/softmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,12 +129,12 @@ def log_softmax(x, axis=-1):
Parameters
----------
data : tvm.te.Tensor
2-D input data
N-D input data

Returns
-------
output : tvm.te.Tensor
2-D output with same shape
N-D output with same shape
"""
shape = x.shape
if axis < 0:
Expand Down
36 changes: 36 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -4177,6 +4177,42 @@ def test_cross_entropy_loss():
verify_model(torch.nn.CrossEntropyLoss().eval(), input_data=[predictions, targets])


def test_forward_l1_loss():
torch.set_grad_enabled(False)
N, C = 10, 3
predictions = torch.rand((N, C)).float()
targets = torch.rand((N, C)).float()
verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets])
verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets])
verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets])

# multidimension l1 loss
d1, d2 = 2, 3
predictions = torch.rand((N, C, d1, d2)).float()
targets = torch.rand((N, C, d1, d2)).float()
verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets])
verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets])
verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets])


def test_forward_mse_loss():
torch.set_grad_enabled(False)
N, C = 10, 3
predictions = torch.rand((N, C)).float()
targets = torch.rand((N, C)).float()
verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets])
verify_model(torch.nn.MSELoss(reduction="sum").eval(), input_data=[predictions, targets])
verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets])

# multidimension mse loss
d1, d2 = 2, 3
predictions = torch.rand((N, C, d1, d2)).float()
targets = torch.rand((N, C, d1, d2)).float()
verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets])
verify_model(torch.nn.MSELoss(reduction="sum").eval(), input_data=[predictions, targets])
verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets])


@tvm.testing.uses_gpu
def test_forward_flip():
torch.set_grad_enabled(False)
Expand Down