Skip to content
Merged
28 changes: 19 additions & 9 deletions python/tvm/auto_scheduler/dispatcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,11 +130,13 @@ class ApplyHistoryBest(DispatchContext):

Parameters
----------
records : str or iterator of (auto_scheduler.measure.MeasureInput,\
auto_scheduler.measure.MeasureResult)
records : str, list of str, or iterator of (auto_scheduler.measure.MeasureInput,\
auto_scheduler.measure.MeasureResult)
Collection of tuning records.
If is str, then it should be the filename of a records log file.
Each row of this file is an encoded record pair. Otherwise, it is an iterator.
Each row of this file is an encoded record pair. If it is an iterator,
it can either be a set of str filenames which will be applied jointly,
or a set of (input, result) tuples.
n_lines: Optional[int]
if it is not None, only load the first `n_lines` lines of log.
include_compatible: bool
Expand Down Expand Up @@ -196,20 +198,28 @@ def load(self, records, n_lines=None):
n_lines: Optional[int]
if it is not None, only load the first `n_lines` lines of log
"""
if isinstance(records, pathlib.Path):
records = str(records)
joint_records = []
if not isinstance(records, (list, tuple)):
records = [records]

if isinstance(records, str):
records = load_records(records)
for rec in records:
if isinstance(rec, pathlib.Path):
rec = str(rec)

if isinstance(rec, str):
rec = load_records(rec)
joint_records += rec
else:
joint_records.append(rec)

if not records:
if not joint_records:
return

best_by_targetkey = self.best_by_targetkey
best_by_model = self.best_by_model

counter = 0
for inp, res in records:
for inp, res in joint_records:
if n_lines is not None and counter >= n_lines:
break
counter += 1
Expand Down
34 changes: 24 additions & 10 deletions python/tvm/autotvm/task/dispatcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,10 +184,12 @@ class ApplyHistoryBest(DispatchContext):

Parameters
----------
records : str or iterator of (autotvm.measure.MeasureInput, autotvm.measure.MeasureResult)
records : str, list of str, or iterator of (autotvm.measure.MeasureInput,\
autotvm.measure.MeasureResult)
Collection of tuning records.
If is str, then it should be the filename of a records log file.
Each row of this file is an encoded record pair. Otherwise, it is an iterator.
Each row of this file is an encoded record pair. If it is a list, it can either be
a list of paths to log files that will be loaded jointly or an iterator or records.
"""

def __init__(self, records):
Expand All @@ -205,28 +207,40 @@ def load(self, records):

Parameters
----------
records : str or iterator of (autotvm.measure.MeasureInput, autotvm.measure.MeasureResult)
records : str, list of str, or iterator of
(autotvm.measure.MeasureInput, autotvm.measure.MeasureResult)
Collection of tuning records.
If is str, then it should be the filename of a records log file.
Each row of this file is an encoded record pair. Otherwise, it is an iterator.
Each row of this file is an encoded record pair. If it is a list
it can either be a list of paths to logs that will loaded jointly or
an iterator of measurement results.
"""
# pylint: disable=import-outside-toplevel
from pathlib import Path
from ..record import load_from_file

if isinstance(records, Path):
records = str(records)
joint_records = []
if not isinstance(records, (list, tuple)):
records = [records]

if isinstance(records, str):
records = load_from_file(records)
if not records:
for rec in records:
if isinstance(rec, Path):
rec = str(rec)

if isinstance(rec, str):
rec = load_from_file(rec)
joint_records += rec
else:
joint_records.append(rec)

if not joint_records:
return

best_by_targetkey = self.best_by_targetkey
best_by_model = self.best_by_model

counter = 0
for inp, res in records:
for inp, res in joint_records:
counter += 1
if res.error_no != 0:
continue
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/transform/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,4 @@
from .transform import *
from .recast import recast
from . import fake_quantization_to_integer, mixed_precision
from .flexible_shape import FlexibleShapeDispatch
273 changes: 273 additions & 0 deletions python/tvm/relay/transform/flexible_shape.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, dangerous-default-value
"""Relay functions for wrapping a module with flexible shape dispatch."""
from tvm import relay


def override_shape(tensor_type, dim, value):
"""Change a value in a tensor shape."""
new_dims = list(tensor_type.shape)
new_dims[dim] = value
return relay.TensorType(new_dims, tensor_type.dtype)


def specialize_body(mod, function, dim, value, input_indices=[0], affects_output=True):
"""Create a subgraph to handle specific input shapes"""
# Iterate through specified inputs and construct specialized shapes for each.
new_params = list(function.params)
data_binding = {}
dyn_data_array = []
for inp in input_indices:
data = function.params[inp]
flex_ty = override_shape(data.type_annotation, dim, value)
dyn_data = relay.Var(data.name_hint, type_annotation=flex_ty)
new_params[inp] = dyn_data
data_binding[data] = dyn_data
dyn_data_array.append(dyn_data)

# Create a new function body for the modified shapes.
new_body = relay.expr.bind(function.body, data_binding)
# Only change the output shape if the input shape affects it.
if affects_output:
new_ret_ty = override_shape(function.ret_type, dim, value)
else:
new_ret_ty = function.ret_type
gvar = relay.GlobalVar("main_" + str(value))
# Add the new function to the main IRModule.
mod[gvar] = relay.Function(
new_params, new_body, new_ret_ty, function.type_params, function.attrs
)
return gvar, [d.type_annotation for d in dyn_data_array]


def flexible_dispatch(
mod, dim=0, buckets=[1], auto_pad=False, pad_value=0, input_indices=[0], affects_output=True
):
"""
Enable inference of multiple shaped inputs in one module.

This transformation adds a handler around a module that
checks input shapes and dispatches to a subgraph specialized
to handle the specific shapes of that input. If no exactly matching
subgraph is available, the input will be run using full dynamism.
For best performance, specify all the sizes the module will
be likely to see using the buckets argument.

Parameters
----------
dim: int
The dimension of the input that should be made flexible. This will
most often be used for the batch dimension.
buckets: list[int]
The sizes of the input dimension that should be explicitly handled.
Each value in buckets will have a corresponding subgraph constructed to
handle it.
auto_pad: Optional[bool]
If True, then padding will be inserted to values that don't match one of
the provided buckets.
pad_value: Optional[float]
When auto_pad is true, padding will be done with this value.
input_indices: Optional[List[int]]
Which inputs should be dispatched dynamically, provided by index. All inputs
must share the same dynamic axis.
affects_output: Optional[bool]
Whether the change in input shape has a corresponding effect on the output shape.
Batching for example effects both the input and output whereas changing sequence
length in an NLP model typically does not.

Returns
-------
mod : IRModule
The new module wrapped with a flexible shape dispatch handler.
"""
main_fn = mod["main"]

# Extract all input data and create a new dynamic variable for each.
data = []
dyn_data = []
for i in input_indices:
data.append(main_fn.params[i])
dyn_shape = override_shape(data[i].type_annotation, dim, relay.Any())
dyn_data.append(relay.Var(data[i].name_hint, type_annotation=dyn_shape))

# Extract the dynamic shape value from one of the inputs.
rt_sh = relay.op.shape_of(dyn_data[0])
flex_value = relay.op.take(rt_sh, relay.const(dim))

if_exprs = []

for i, bucket in enumerate(buckets):
input_data = dyn_data
check_dim = flex_value

# Apply automatic padding if specified.
if auto_pad:
input_data = []
# Construct padding expression for inputs.
for j, inp in enumerate(dyn_data):
pad_width = relay.const(bucket) - flex_value
rank = len(data[j].type_annotation.shape)
pads = relay.zeros([rank, 2], "int32")
pads = relay.scatter_nd(pads, relay.const([dim, 1]), pad_width)
padded_value = relay.nn.pad(inp, pads, pad_value)

# Determine if this is the proper bucket to pad to. Do this by checking if the
# input shape is between this bucket and the previous.
if i == 0:
padded_value = relay.If(
relay.op.less_equal(flex_value, relay.const(bucket)), padded_value, inp
)
else:
padded_value = relay.If(
relay.op.logical_and(
relay.op.less_equal(flex_value, relay.const(bucket)),
relay.op.greater(flex_value, relay.const(buckets[i - 1])),
),
padded_value,
inp,
)
# Update input value and test dimension to reflect possible padding.
input_data.append(padded_value)
# Grab the new possibly padded shape for checking bucket size.
check_dim = relay.op.take(relay.op.shape_of(input_data[0]), relay.const(dim))

# Create a specialized subgraph for the current bucket.
spec_call, spec_ty = specialize_body(
mod, main_fn, dim, bucket, input_indices=input_indices, affects_output=affects_output
)
# Apply hard casting to shape to create statically typed graphs.
spec_data = []
for j, inp in enumerate(input_data):
spec_data.append(relay.op.reshape(inp, spec_ty[j].shape))

# Create a dispatch statement for the current specialized graph.
call_args = list(main_fn.params)
for j, inp in enumerate(input_indices):
call_args[inp] = spec_data[j]
new_call = spec_call(*call_args)

# Remove meaningless padded outputs if applicable.
if auto_pad and affects_output:
new_call = relay.take(
new_call,
relay.arange(start=relay.const(0), stop=flex_value, dtype="int32"),
axis=dim,
)

# Add this new case to the dispatch handler.
if_exprs.append((relay.op.equal(check_dim, relay.const(bucket)), new_call))

# Create a subgraph to handle all other shapes.
default_dyn_call, _ = specialize_body(
mod, main_fn, dim, relay.Any(), input_indices=input_indices, affects_output=affects_output
)
call_args = list(main_fn.params)
for j, inp in enumerate(input_indices):
call_args[inp] = dyn_data[j]
new_body = default_dyn_call(*call_args)

# Create an If chain to dispatch shapes to the appropriate specialized subgraph.
for cond, true_branch in if_exprs:
new_body = relay.If(cond, true_branch, new_body)

# Assign new parameters to the function.
new_params = list(main_fn.params)
for j, inp in enumerate(input_indices):
new_params[inp] = dyn_data[j]

# Update the output shape to be dynamic if needed.
if affects_output:
dyn_ret_type = override_shape(main_fn.ret_type, dim, relay.Any())
else:
dyn_ret_type = main_fn.ret_type

# Assign the handler as the new entrypoint in the module.
new_main = relay.Function(
new_params, new_body, dyn_ret_type, main_fn.type_params, main_fn.attrs
)
mod["main"] = new_main
return mod


class FlexibleShapeDispatch(object):
"""Enable inference of multiple shaped inputs in one module.

This transformation adds a handler around a module that
checks input shapes and dispatches to a subgraph specialized
to handle the specific shapes of that input. If no exactly matching
subgraph is available, the input will be run using full dynamism.
For best performance, specify all the sizes the module will
be likely to see using the buckets argument.

Parameters
----------
dim: int
The dimension of the input that should be made flexible. This will
most often be used for the batch dimension.
buckets: list[int]
The sizes of the input dimension that should be explicitly handled.
Each value in buckets will have a corresponding subgraph constructed to
handle it.
auto_pad: Optional[bool]
If True, then padding will be inserted to values that don't match one of
the provided buckets.
pad_value: Optional[float]
When auto_pad is true, padding will be done with this value.
input_indices: Optional[List[int]]
Which inputs should be dispatched dynamically, provided by index. All inputs
must share the same dynamic axis.
affects_output: Optional[bool]
Whether the change in input shape has a corresponding effect on the output shape.
Batching for example effects both the input and output whereas changing sequence
length in an NLP model typically does not.

Returns
-------
ret : FlexibleShapeDispatch
A pass that can be applied to a module to add flexible shape handling.
"""

def __init__(
self,
dim=0,
buckets=[1],
auto_pad=False,
pad_value=0,
input_indices=[0],
affects_output=True,
):
self.dim = dim
self.buckets = buckets
self.auto_pad = auto_pad
self.pad_value = pad_value
self.input_indices = input_indices
self.affects_output = affects_output
super(FlexibleShapeDispatch, self).__init__()

def __call__(self, mod):
# Shape information is required for this pass.
mod = relay.transform.InferType()(mod)
return flexible_dispatch(
mod,
self.dim,
self.buckets,
self.auto_pad,
self.pad_value,
self.input_indices,
self.affects_output,
)
Loading