-
Notifications
You must be signed in to change notification settings - Fork 3.7k
[Hexagon] Add test for depthwise conv2d schedule #11138
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
mehrdadh
merged 5 commits into
apache:main
from
farshidsp:farshidsp/hexagon/add_operator_tests
Apr 28, 2022
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
441d485
Add test for registered scheduales - depthwise_conv2d
farshidsp 59dd7e5
added more test to depthwise_conv2
farshidsp ad15633
adding new line at the end of the file
farshidsp ab8b529
reformatted the file
farshidsp e5b5670
resolve comments
farshidsp File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
298 changes: 298 additions & 0 deletions
298
tests/python/contrib/test_hexagon/topi/test_depthwise_conv2d.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,298 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
|
|
||
| import sys | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
|
|
||
| import tvm | ||
| import tvm.testing | ||
| import tvm.topi.testing | ||
|
|
||
| from tvm import te, topi | ||
| from tvm.topi.utils import get_const_tuple | ||
| from tvm.topi.nn.utils import get_pad_tuple | ||
| from ..conftest import requires_hexagon_toolchain | ||
|
|
||
|
|
||
| random_seed = tvm.testing.parameter(0) | ||
|
|
||
| in_dtype, out_dtype = tvm.testing.parameters( | ||
| ("float32", "float32"), | ||
| ) | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def input_shape(layout, batch, in_channel, in_size, filter_shape): | ||
| if layout == "NCHW": | ||
| return (batch, in_channel, in_size, in_size) | ||
| elif layout == "NHWC": | ||
| return (batch, in_size, in_size, in_channel) | ||
| elif layout == "NCHWc": | ||
| oc_block = filter_shape[-1] | ||
| ic_block = next(bn for bn in range(oc_block, 0, -1) if in_channel % bn == 0) | ||
| return (batch, in_channel // ic_block, in_size, in_size, ic_block) | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def filter_shape(layout, in_channel, channel_multiplier, kernel): | ||
| filter_channel = in_channel | ||
| if layout == "NCHW": | ||
| return (filter_channel, channel_multiplier, kernel, kernel) | ||
| elif layout == "NHWC": | ||
| return (kernel, kernel, filter_channel, channel_multiplier) | ||
| elif layout == "NCHWc": | ||
| out_channel = in_channel * channel_multiplier | ||
| # For testing the functionality, we choose an arbitrary block | ||
| # size that can divide out_channel, regardless of the | ||
| # performance. | ||
| oc_block = next(bn for bn in range(16, 0, -1) if out_channel % bn == 0) | ||
| return (out_channel // oc_block, 1, kernel, kernel, 1, oc_block) | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def scale_shape(layout, in_channel, channel_multiplier, filter_shape): | ||
| out_channel = in_channel * channel_multiplier | ||
|
|
||
| if layout in ("NCHW", "NHWC"): | ||
| return (out_channel,) | ||
|
|
||
| if layout == "NCHWc": | ||
| oc_block = filter_shape[-1] | ||
| return (out_channel // oc_block, oc_block) | ||
|
|
||
| raise ValueError("Unknown layout {}".format(layout)) | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def shift_shape(scale_shape): | ||
| return scale_shape | ||
|
|
||
|
|
||
| @tvm.testing.fixture(cache_return_value=True) | ||
| def ref_data( | ||
| random_seed, | ||
| in_dtype, | ||
| out_dtype, | ||
| layout, | ||
| input_shape, | ||
| filter_shape, | ||
| dilation, | ||
| stride, | ||
| padding, | ||
| scale_shape, | ||
| shift_shape, | ||
| use_scale_shift, | ||
| apply_relu, | ||
| ): | ||
| np.random.seed(random_seed) | ||
|
|
||
| print(input_shape) | ||
|
|
||
| # scipy.signal.convolve2d does not support float16 data types, and | ||
| # the python fallback is too slow for general use. Computing | ||
| # ref_data in float32 will have fewer rounding errors than the TVM | ||
| # float16 compute, but those vary based on schedule anyways. | ||
| conv_dtype = "float32" if in_dtype == "float16" else in_dtype | ||
|
|
||
| input_np = np.random.uniform(size=input_shape).astype(in_dtype) | ||
| filter_np = np.random.uniform(size=filter_shape).astype(in_dtype) | ||
| scale_np = np.random.uniform(size=scale_shape).astype(out_dtype) | ||
| shift_np = np.random.uniform(size=shift_shape).astype(out_dtype) | ||
| if layout == "NCHW": | ||
| np_depthwise_conv2d = tvm.topi.testing.depthwise_conv2d_python_nchw | ||
| dilation = (1, 1, dilation, dilation) | ||
| reshape = (1, -1, 1, 1) | ||
| elif layout == "NHWC": | ||
| np_depthwise_conv2d = tvm.topi.testing.depthwise_conv2d_python_nhwc | ||
| dilation = (dilation, dilation, 1, 1) | ||
| reshape = (1, 1, 1, -1) | ||
| elif layout == "NCHWc": | ||
| np_depthwise_conv2d = tvm.topi.testing.depthwise_conv2d_python_nchwc | ||
| dilation = (1, 1, dilation, dilation, 1, 1) | ||
| reshape = (1, scale_shape[0], 1, 1, scale_shape[1]) | ||
|
|
||
| dilated_filter_np = tvm.topi.testing.dilate_python(filter_np, dilation) | ||
| output_np = np_depthwise_conv2d( | ||
| input_np.astype(conv_dtype), dilated_filter_np.astype(conv_dtype), stride, padding | ||
| ).astype(out_dtype) | ||
|
|
||
| if use_scale_shift: | ||
| output_np = output_np * scale_np.reshape(reshape) + shift_np.reshape(reshape) | ||
| if apply_relu: | ||
| output_np = np.maximum(output_np, 0) | ||
|
|
||
| return ( | ||
| input_np, | ||
| filter_np, | ||
| scale_np, | ||
| shift_np, | ||
| output_np, | ||
| ) | ||
|
|
||
|
|
||
| class BaseDepthwiseConv2D: | ||
| """Provides the test_conv2d test function, to be used by other test classes. | ||
|
|
||
| Test parameter sets are split out into different classes for | ||
| readability (e.g. used for mobilenet), and for restrictions | ||
| (e.g. implemented only for llvm). | ||
| """ | ||
|
|
||
| @requires_hexagon_toolchain | ||
| def test_conv2d( | ||
| self, | ||
| hexagon_session, | ||
| in_dtype, | ||
| out_dtype, | ||
| layout, | ||
| input_shape, | ||
| filter_shape, | ||
| scale_shape, | ||
| shift_shape, | ||
| use_scale_shift, | ||
| apply_relu, | ||
| batch, | ||
| in_channel, | ||
| channel_multiplier, | ||
| kernel, | ||
| stride, | ||
| padding, | ||
| dilation, | ||
| ref_data, | ||
| ): | ||
| target_hexagon = tvm.target.hexagon("v68") | ||
|
|
||
| # Transform the padding argument from 'str' to 'tuple' to | ||
| # match the "workload" tuple in TopHub. Which padding_args to | ||
| # use for each layout chosen to reproduce previous behavior. | ||
| if dilation == 1: | ||
| padding_args = get_pad_tuple(padding, (kernel, kernel)) | ||
| padding_args_i = [0, 1, 2, 3] if layout == "NCHW" else [0, 1] | ||
| padding_args = [padding_args[i] for i in padding_args_i] | ||
| else: | ||
| padding_args = padding | ||
|
|
||
| # placeholder | ||
| Input = te.placeholder(input_shape, name="Input", dtype=in_dtype) | ||
| Filter = te.placeholder(filter_shape, name="Filter", dtype=in_dtype) | ||
| Scale = te.placeholder(scale_shape, name="Scale", dtype=out_dtype) | ||
| Shift = te.placeholder(shift_shape, name="Shift", dtype=out_dtype) | ||
|
|
||
| if layout == "NCHW": | ||
| topi_scale_shift = topi.nn.scale_shift_nchw | ||
| fcompute_args = (Input, Filter, stride, padding_args, dilation, out_dtype) | ||
|
|
||
| elif layout == "NHWC": | ||
| topi_scale_shift = topi.nn.scale_shift_nhwc | ||
| fcompute_args = (Input, Filter, stride, padding_args, dilation, out_dtype) | ||
|
|
||
| elif layout == "NCHWc": | ||
| topi_scale_shift = topi.nn.scale_shift_nchwc | ||
| in_layout = "NCHW{}c".format(input_shape[-1]) | ||
| out_layout = "NCHW{}c".format(filter_shape[-1]) | ||
| fcompute_args = ( | ||
| Input, | ||
| Filter, | ||
| stride, | ||
| padding, | ||
| dilation, | ||
| in_layout, | ||
| out_layout, | ||
| out_dtype, | ||
| ) | ||
|
|
||
| with tvm.target.Target(target_hexagon): | ||
| # Declare, build schedule | ||
| if layout == "NCHW": | ||
| fcompute = topi.nn.depthwise_conv2d_nchw | ||
| fschedule = topi.hexagon.schedule_depthwise_conv2d_nchw | ||
| elif layout == "NHWC": | ||
| fcompute = topi.nn.depthwise_conv2d_nhwc | ||
| fschedule = topi.hexagon.schedule_depthwise_conv2d_nhwc | ||
| C = fcompute(*fcompute_args) | ||
| if use_scale_shift: | ||
| C = topi_scale_shift(C, Scale, Shift) | ||
| if apply_relu: | ||
| C = topi.nn.relu(C) | ||
|
|
||
| s = fschedule([C]) | ||
|
|
||
| # Build and run | ||
| f = tvm.build( | ||
| s, | ||
| [Input, Filter, Scale, Shift, C], | ||
| tvm.target.Target(target_hexagon, host=target_hexagon), | ||
| ) | ||
| mod = hexagon_session.load_module(f) | ||
|
|
||
| input_np, filter_np, scale_np, shift_np, output_np = ref_data | ||
|
|
||
| dev = hexagon_session.device | ||
| input_tvm = tvm.nd.array(input_np, dev) | ||
| filter_tvm = tvm.nd.array(filter_np, dev) | ||
| scale_tvm = tvm.nd.array(scale_np, dev) | ||
| shift_tvm = tvm.nd.array(shift_np, dev) | ||
| output_tvm = tvm.nd.array( | ||
| np.zeros(shape=get_const_tuple(C.shape), dtype=C.dtype), | ||
| dev, | ||
| ) | ||
|
|
||
| mod(input_tvm, filter_tvm, scale_tvm, shift_tvm, output_tvm) | ||
|
|
||
| tol = {"rtol": 1e-4, "atol": 1e-5} | ||
| tvm.testing.assert_allclose(output_np, output_tvm.numpy(), **tol) | ||
|
|
||
|
|
||
| class TestDepthwiseConv2D_MobilenetWorkloads(BaseDepthwiseConv2D): | ||
| """Extra tests to verify functionality for workloads used by mobilenet.""" | ||
|
|
||
| layout = tvm.testing.parameter("NCHW", "NHWC") | ||
| use_scale_shift = tvm.testing.parameter(False, ids=["no_scale_shift"]) | ||
| apply_relu = tvm.testing.parameter(False, ids=["no_relu"]) | ||
|
|
||
| batch = tvm.testing.parameter(1) | ||
| channel_multiplier = tvm.testing.parameter(1) | ||
| kernel = tvm.testing.parameter(3) | ||
| padding = tvm.testing.parameter("SAME") | ||
| dilation = tvm.testing.parameter(1) | ||
|
|
||
| in_channel, in_size, stride = tvm.testing.parameters( | ||
| (32, 112, 1), | ||
| (64, 112, 2), | ||
| (128, 56, 1), | ||
| (128, 56, 2), | ||
| (256, 28, 1), | ||
| ) | ||
|
|
||
|
|
||
| class TestDepthwiseConv2D(BaseDepthwiseConv2D): | ||
|
|
||
| layout = tvm.testing.parameter("NCHW", "NHWC") | ||
| use_scale_shift = tvm.testing.parameter(True, False, ids=["with_scale_shift", "no_scale_shift"]) | ||
| apply_relu = tvm.testing.parameter(True, False, ids=["with_relu", "no_relu"]) | ||
|
|
||
| (batch, in_channel, in_size, channel_multiplier, kernel, stride) = tvm.testing.parameters( | ||
| (1, 64, 32, 1, 3, 1), | ||
| (1, 128, 64, 2, 5, 2), | ||
| ) | ||
| padding = tvm.testing.parameter("VALID") | ||
| dilation = tvm.testing.parameter(1) | ||
|
|
||
|
|
||
| # TODO(hexagon-team): add TestDepthwiseConv2D_NCHWc test. | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.