-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Fix broadcast InferCorrectLayout #10156
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 7 commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
118d87a
Move function body to .cc file.
lazycal 53bb924
fix broadcast infer layout
lazycal b2ce09c
add unittest
lazycal cc13a51
backward-compat: optimize for scalar layout
lazycal 0cbf0de
fix lint
lazycal 23a9584
Merge branch 'main' into fix-bcast-infer-layout1
lazycal c6bac19
fix lint and warning
lazycal a5c8161
Add newlines; Use std::vector
lazycal d45c476
fix lint
lazycal f7cefe1
jostle ci
lazycal File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,260 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one | ||
| * or more contributor license agreements. See the NOTICE file | ||
| * distributed with this work for additional information | ||
| * regarding copyright ownership. The ASF licenses this file | ||
| * to you under the Apache License, Version 2.0 (the | ||
| * "License"); you may not use this file except in compliance | ||
| * with the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, | ||
| * software distributed under the License is distributed on an | ||
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| * KIND, either express or implied. See the License for the | ||
| * specific language governing permissions and limitations | ||
| * under the License. | ||
| */ | ||
|
|
||
| #include "infer_layout_utils.h" | ||
|
|
||
| #include <tvm/relay/expr.h> | ||
| #include <tvm/relay/op_attr_types.h> | ||
| #include <tvm/tir/data_layout.h> | ||
|
|
||
| #include <map> | ||
| #include <string> | ||
| #include <tuple> | ||
| #include <utility> | ||
|
|
||
| #include "pattern_utils.h" | ||
| #include "tvm/runtime/logging.h" | ||
|
|
||
| namespace tvm { | ||
| namespace relay { | ||
|
|
||
| Layout AdjustSubordinateFactors(const Layout& src_layout, const Layout& old_layout, | ||
| const Array<tvm::PrimExpr>& old_shape) { | ||
| // For each subordinate axis | ||
| // 1) Find the corresponding dual axis. | ||
| // 2) Find the Index of this dual axis in old_layout. | ||
| // 3) Find the shape of the that axis in old_shape. | ||
| // 4) a) Adjust factor to 1, if that shape is 1. b) Else retain the factor. | ||
| DLOG(INFO) << "AdjustSubordinateFactors" | ||
| << "src_layout: " << src_layout << " old_layout: " << old_layout | ||
| << " old_shape: " << old_shape << std::endl; | ||
| std::string new_layout; | ||
| for (auto axis : src_layout->axes) { | ||
| if (!LayoutAxis::Get(axis).IsPrimal()) { | ||
| bool is_shape_one = false; | ||
| // 1) Find the corresponding dual axis | ||
| const auto& dual_axis = LayoutAxis::Get(axis).ToPrimal(); | ||
|
|
||
| // 2) Find the index of this dual axis in old_layout | ||
| int old_axis = old_layout.IndexOf(dual_axis); | ||
|
|
||
| if (old_axis == -1) { | ||
| new_layout += "1"; | ||
| is_shape_one = true; | ||
| } else { | ||
| // 3) Find the shape of this index in old_shape | ||
| auto shape_val = old_shape[old_axis]; | ||
|
|
||
| // 4) a) Check if this shape element is 1. | ||
| if (auto* shape_int = shape_val.as<IntImmNode>()) { | ||
| if (shape_int->value == 1) { | ||
| new_layout += "1"; | ||
| is_shape_one = true; | ||
| } | ||
| } | ||
| } | ||
|
|
||
| // 4) b) If shape is not 1, retain the factor. | ||
| if (!is_shape_one) { | ||
| auto new_shape_val = src_layout.FactorOf(dual_axis); | ||
| new_layout += std::to_string(new_shape_val); | ||
| } | ||
| } | ||
| new_layout += LayoutAxis::Get(axis).name(); | ||
| } | ||
| return new_layout != "" ? Layout(new_layout) | ||
| : Layout("H").SubLayout(0, 0); // hack to create a scalar layout | ||
| } | ||
| bool Isomorphic(const Layout& lhs, const Layout& rhs) { | ||
| DLOG(INFO) << "Isomorphic: " | ||
| << "lhs: " << lhs << " rhs: " << rhs << std::endl; | ||
| ICHECK(lhs.defined()); | ||
| ICHECK(rhs.defined()); | ||
| if (lhs->axes.size() != rhs->axes.size()) return false; | ||
| std::map<std::string, std::string> map_to, map_back; | ||
| for (size_t i = 0; i < lhs->axes.size(); ++i) { | ||
| auto& lhs_axis = LayoutAxis::Get(lhs->axes[i]); | ||
| auto& rhs_axis = LayoutAxis::Get(rhs->axes[i]); | ||
| std::string name_lhs = lhs_axis.name(); | ||
| std::string name_rhs = rhs_axis.name(); | ||
| if (lhs_axis.IsPrimal() != rhs_axis.IsPrimal()) return false; | ||
|
|
||
| auto it = map_to.find(name_lhs); | ||
| if (it == map_to.end()) | ||
| map_to[name_lhs] = name_rhs; | ||
| else if (it->second != name_rhs) | ||
| return false; | ||
|
|
||
| it = map_back.find(name_rhs); | ||
| if (it == map_back.end()) | ||
| map_back[name_rhs] = name_lhs; | ||
| else if (it->second != name_lhs) | ||
| return false; | ||
| if (!lhs_axis.IsPrimal() && lhs.FactorOf(lhs_axis) != rhs.FactorOf(rhs_axis)) return false; | ||
| } | ||
| return true; | ||
| } | ||
lazycal marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| Layout TryTransformLike(const Layout& old, const Layout& ref_old, const Layout& ref_new) { | ||
| DLOG(INFO) << "transform_layout: old = " << old << ", ref_new = " << ref_new | ||
| << ", ref_old = " << ref_old << std::endl; | ||
| ICHECK(ref_old.defined()); | ||
| ICHECK(ref_new.defined()); | ||
| ICHECK(old.defined()); | ||
|
|
||
| { // check if old and ref_old are similar enough such that it's | ||
| // compatible for the transform ref_old -> ref_new | ||
| const Layout& large = ref_old.ndim() > old.ndim() ? ref_old : old; | ||
| const Layout& small = large == ref_old ? old : ref_old; | ||
| Layout large_sublayout = large.SubLayout(large.ndim() - small.ndim(), small.ndim()), | ||
| rest_sublayout = large.SubLayout(0, large.ndim() - small.ndim()); | ||
| bool orthorgonal = true; | ||
| for (auto i : rest_sublayout->axes) | ||
| if (large_sublayout.IndexOf(LayoutAxis::Get(i).ToPrimal()) != -1 || | ||
| large_sublayout.IndexOf(LayoutAxis::Get(i).ToSubordinate()) != -1) { | ||
| orthorgonal = false; | ||
| break; | ||
| } | ||
| if (!orthorgonal || !Isomorphic(large_sublayout, small)) | ||
| return Layout::Undef(); // For now this case is not supported. | ||
| } | ||
|
|
||
| // `old` is compatible. Now learn the axis name mapping between `old` and `ref_old` | ||
| if (old.ndim() == 0) return old; // an optmization for scalar: no-op | ||
| int mapping[26]; | ||
| bool used[26]; | ||
| memset(mapping, -1, sizeof mapping); | ||
| memset(used, 0, sizeof used); | ||
lazycal marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| auto find_unused = [&](char preference) -> char { | ||
| if (!used[preference - 'A']) return preference; // preference unused | ||
| for (int i = 0; i < 26; ++i) | ||
| if (!used[i]) return 'A' + i; | ||
| LOG(FATAL) << "All letters are used"; | ||
| return 0; | ||
| }; | ||
| for (int j = old->axes.size() - 1, i = ref_old->axes.size() - 1; j >= 0; --i, --j) { | ||
| char name_ref = LayoutAxis::Get(ref_old->axes[i]).ToPrimal().name()[0]; | ||
| char name = LayoutAxis::Get(old->axes[j]).ToPrimal().name()[0]; | ||
| mapping[name_ref - 'A'] = name - 'A'; | ||
| used[name - 'A'] = true; | ||
| } | ||
| for (int i = ref_old->axes.size() - 1; i >= 0; --i) { | ||
| char name_ref = LayoutAxis::Get(ref_old->axes[i]).ToPrimal().name()[0]; | ||
| int name = mapping[name_ref - 'A']; | ||
| if (name == -1) { | ||
| mapping[name_ref - 'A'] = find_unused(name_ref) - 'A'; | ||
| used[mapping[name_ref - 'A']] = true; | ||
| } | ||
| } | ||
|
|
||
lazycal marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| // apply the mapping to rename `ref_new` | ||
| std::string new_layout; | ||
| for (auto c : std::string(ref_new->name)) { | ||
| if (c >= 'A' && c <= 'Z') { | ||
| ICHECK(mapping[c - 'A'] != -1); | ||
| new_layout += mapping[c - 'A'] + 'A'; | ||
| } else if (c >= 'a' && c <= 'z') { | ||
| ICHECK(mapping[c - 'a'] != -1); | ||
| new_layout += mapping[c - 'a'] + 'a'; | ||
| } else { | ||
| new_layout += c; | ||
| } | ||
| } | ||
| DLOG(INFO) << "new_layout = " << new_layout << std::endl; | ||
| return Layout(new_layout); | ||
| } | ||
|
|
||
| std::pair<Array<Layout>, Array<Layout>> BinaryBroadcastLayoutHelper( | ||
| const Attrs& attrs, const Array<Layout>& new_in_layouts, const Array<Layout>& old_in_layouts, | ||
| const Array<tvm::relay::Type>& old_in_types) { | ||
| // Two steps. Step (2) only executes if the function is called after rewrite. | ||
| // (1) infer input layouts before rewrite | ||
| // (2) if some input layouts are changed by its producer after rewrite, rewrite the other | ||
| // layout to make sure it's changed in the same way, so that they are still broadcastable. | ||
| Array<Layout> layouts; | ||
| Array<Array<IndexExpr>> old_in_shapes; | ||
| for (auto old_in_t : old_in_types) { | ||
| ICHECK(old_in_t.as<TensorTypeNode>()); | ||
| old_in_shapes.push_back(old_in_t.as<TensorTypeNode>()->shape); | ||
| } | ||
| int old_large_idx = old_in_shapes[0].size() >= old_in_shapes[1].size() ? 0 : 1; | ||
|
|
||
| layouts.Assign(old_in_layouts.begin(), old_in_layouts.end()); | ||
| // always operate on the original layouts first for consistency | ||
|
|
||
| std::pair<Array<Layout>, Array<Layout>> out, | ||
| out_default{{Layout::Undef(), Layout::Undef()}, {Layout::Undef()}}; | ||
|
|
||
| if (!layouts[0].defined() && !layouts[1].defined()) { | ||
| // both undefined, infer fails | ||
| out = out_default; | ||
| } else if (!layouts[0].defined() || !layouts[1].defined()) { | ||
| // only one is defined, use shape information to help infer | ||
| int defined_idx = layouts[0].defined() ? 0 : 1; | ||
| int undef_idx = 1 - defined_idx; | ||
|
|
||
| if (old_in_shapes[defined_idx].size() >= old_in_shapes[undef_idx].size()) { | ||
| // TODO(lazycal): handle the case when the sublayout contains subcoordinate of factor one but | ||
| // the other tensor has the corresponding dimension size other than one. | ||
| // E.g. defined's shape = [x, x, x, x, 1] in NCHW1c and undefined's shape = [3] | ||
| layouts.Set(undef_idx, layouts[defined_idx].SubLayout(old_in_shapes[defined_idx].size() - | ||
| old_in_shapes[undef_idx].size(), | ||
| old_in_shapes[undef_idx].size())); | ||
| out = {layouts, {layouts[defined_idx]}}; | ||
| } else { | ||
| // only know the tensor with smaller dimensions, | ||
| // so we cannot infer the final broadcasted output. | ||
| // fails in this case. | ||
| out = out_default; | ||
| } | ||
| } else { | ||
| // when both are defined, return the larger one | ||
| out = {layouts, {layouts[old_large_idx]}}; | ||
| } | ||
| if (!new_in_layouts.defined()) return out; | ||
| // Step (2) rewrite the layouts to make them broadcastable again. | ||
| Layout ret = new_in_layouts[old_large_idx]; | ||
| int large_idx = new_in_layouts[0].ndim_primal() >= new_in_layouts[1].ndim_primal() ? 0 : 1; | ||
| int small_idx = 1 - large_idx; | ||
| // start adjusting | ||
|
|
||
| // Apply a greedy strategy that always transform the small layout in the same way as the | ||
| // large layout is transformed, if possible. | ||
| Layout tgt_layout = | ||
| TryTransformLike(layouts[small_idx], layouts[large_idx], new_in_layouts[large_idx]); | ||
| if (!tgt_layout.defined()) return out_default; // fallback | ||
|
|
||
| // Support scenarios where original operands were of type [N, H, W, C] and [N, H, W, 1] | ||
| // In this case, we might have NCHW16c coming for 1 operand. However, the other operand does | ||
| // not have enough C dimension. To reuse broadcasting, we would want to use NCHW1c for the | ||
| // second operand. The following section of code walks through the layouts and shapes to | ||
| // perform that operation. | ||
| // a in NCHWC16c | ||
| // b in NHW1 | ||
| // b = layout_transform(b) from NHW1 -> NCHW1c | ||
| // add(a, b) | ||
| auto old_small_shape = old_in_shapes[small_idx]; | ||
| auto old_small_layout = layouts[small_idx]; | ||
| auto new_small_layout = AdjustSubordinateFactors(tgt_layout, old_small_layout, old_small_shape); | ||
| layouts.Set(large_idx, new_in_layouts[large_idx]); | ||
| layouts.Set(small_idx, new_small_layout); | ||
| return {layouts, {ret}}; | ||
| } | ||
|
|
||
| } // namespace relay | ||
| } // namespace tvm | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.