-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Description
Expected behavior
TVM should run the model correctly.
Actual behavior
For the following model,
it can be executed by onnxruntime and tensorrt, the results are as follows:
[array([[[[ 0.956883 , 0.34308553, 0.5195541 , 1.9632151 ],
[ 1.883044 , -0.23061049, -0.7294371 , 2.5681047 ],
[ 0.28407115, 1.682113 , 2.5914793 , 0.4852687 ],
[ 0.24526536, 0.30622482, 3.0827932 , 1.4561847 ]],
[[ 2.1793444 , -2.5670562 , -0.80677223, 2.8984652 ],
[ 0.08523583, -0.3017456 , -2.035876 , 2.2447228 ],
[-0.35428178, 2.6846695 , 0.35822523, 2.3507211 ],
[ 1.695939 , 0.96472025, 0.18676078, 0.34729946]],
[[ 2.6731548 , 0.75374746, -0.6920886 , 1.0468161 ],
[ 3.229167 , -0.11532289, -2.1251893 , 0.39142615],
[-2.1620007 , 2.5675638 , 1.9419372 , 4.1579857 ],
[ 0.9184834 , 1.6698728 , 2.0392544 , 0.292496 ]]]],
dtype=float32)]However, the onnx frontend of TVM cannot import it:
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3925, in from_onnx
return g.from_onnx(graph, opset)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3556, in from_onnx
self._construct_nodes(graph)
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3736, in _construct_nodes
raise err
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3733, in _construct_nodes
op = self.bb.normalize(op)
^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/block_builder.py", line 667, in normalize
return _ffi_api.BlockBuilderNormalize(self, expr) # type: ignore
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "tvm/ffi/cython/./function.pxi", line 228, in tvm.ffi.core.Function.__call__
tvm.error.InternalError: Op(relax.nn.layer_norm) requires the input gamma to have as many dimensions as the length of input axes. However, the given one has ndim 3, which is other than the length of axes 1From the onnx specification of LayerNormalization, the attribute 'axis' is the first normalization dimension. In this issue, axis=1, which indicates that the LayerNormalization operator will normalize the last three dimension of the date. According to this understanding, the shape [3,4,4] of Scale should be correct.
Environment
OS: Ubuntu 20.04
TVM: 0.22.dev0 (c6969d7)
onnxruntime: 1.21.0
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment. As shown in the code, the model can be executed by onnxruntime. However, TVM cannot import this model.
import sys
import numpy as np
import onnx
import onnxruntime
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import pickle
def main():
onnx_model = onnx.load("111.onnx")
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
sys.exit(1)
print("ONNXRuntime:\n", ort_output)
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
if __name__ == "__main__":
main()Triage
Please refer to the list of label tags here to find the relevant tags and add them below in a bullet format (example below).
- needs-triage