Skip to content

[Bug] inconsistent results for the CPU and CUDA targets. #17965

@coffezhou

Description

@coffezhou

Expected behavior

TVM should output consistent results for the CPU and GPU targets.

Actual behavior

For the following model:

Image

when compile the model for the CPU target, the output is:

cpu:  [[[[nan nan nan]
   [nan nan nan]
   [nan nan nan]]

  [[nan nan nan]
   [nan nan nan]
   [nan nan nan]]

  [[nan nan nan]
   [nan nan nan]
   [nan nan nan]]]]

However, when the target is CUDA, the output is:

gpu:  [[[[ 9.5653236e-01  8.9820576e-01  8.9820576e-01]
   [ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
   [-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]

  [[ 9.5653236e-01  8.9820576e-01  8.9820576e-01]
   [ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
   [-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]

  [[ 9.5653236e-01  8.9820576e-01  8.9820576e-01]
   [ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
   [-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]]]

Environment

OS: Ubuntu 20.04
TVM: 0.21.dev0(bcb68b1)
CUDA: 11.8
GPU: NVIDIA GeForce RTX 3080

Steps to reproduce

This bug can be reproduced by the following code with the model in the attachment.

import sys

import numpy as np
import onnx
import onnxruntime

import tvm
import tvm.testing
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx

import pickle

            
def main():
    onnx_model = onnx.load("a249.onnx")
    
    with open("inputs.pkl", "rb") as fp:
        inputs = pickle.load(fp)
       
    # Convert the onnx model into relax through the onnx importer.
    tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
    # Convert operators for inference mode.
    tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
    # Legalize any relax ops into tensorir.
    tvm_model = relax.transform.LegalizeOps()(tvm_model)

    # Separate model from parameters.
    tvm_model, params = relax.frontend.detach_params(tvm_model)
    
    # Prepare inputs.
    input_list = [
        inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs
    ]
    if params:
        input_list += params["main"]
        
    # Compile the relax graph into a VM then run.
    #----------------------cpu-----------------------
    with tvm.transform.PassContext(opt_level=0):
        ex = relax.build(tvm_model, target="llvm")
        vm = relax.VirtualMachine(ex, tvm.cpu())
    
        # Run model and check outputs.
        vm.set_input("main", *input_list)
        vm.invoke_stateful("main")
        tvm_cpu_output = vm.get_outputs("main")
        
        print("cpu: ", tvm_cpu_output)
    #----------------------cpu-----------------------
    
    #----------------------cuda-----------------------
    with tvm.target.Target("cuda"):
        tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model) 

        with tvm.transform.PassContext(opt_level=3):
            ex = tvm.compile(tvm_model, target="cuda")
            vm1 = relax.VirtualMachine(ex, tvm.cuda())
            
        vm1.set_input("main", *input_list)
        vm1.invoke_stateful("main")
        tvm_gpu_output = vm1.get_outputs("main")
        
        print("gpu: ", tvm_gpu_output)
    #----------------------cuda-----------------------
    
if __name__ == "__main__":
    
    main()

testcase.zip

Triage

  • needs-triage

Metadata

Metadata

Assignees

No one assigned

    Labels

    needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions