-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Open
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug
Description
Expected behavior
TVM should output consistent results for the CPU and GPU targets.
Actual behavior
For the following model:
when compile the model for the CPU target, the output is:
cpu: [[[[nan nan nan]
[nan nan nan]
[nan nan nan]]
[[nan nan nan]
[nan nan nan]
[nan nan nan]]
[[nan nan nan]
[nan nan nan]
[nan nan nan]]]]However, when the target is CUDA, the output is:
gpu: [[[[ 9.5653236e-01 8.9820576e-01 8.9820576e-01]
[ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
[-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]
[[ 9.5653236e-01 8.9820576e-01 8.9820576e-01]
[ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
[-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]
[[ 9.5653236e-01 8.9820576e-01 8.9820576e-01]
[ 9.5653236e-01 -3.4028231e+38 -3.4028231e+38]
[-3.4028231e+38 -3.4028231e+38 -3.4028231e+38]]]]Environment
OS: Ubuntu 20.04
TVM: 0.21.dev0(bcb68b1)
CUDA: 11.8
GPU: NVIDIA GeForce RTX 3080
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment.
import sys
import numpy as np
import onnx
import onnxruntime
import tvm
import tvm.testing
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import pickle
def main():
onnx_model = onnx.load("a249.onnx")
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
# Convert operators for inference mode.
tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
# Legalize any relax ops into tensorir.
tvm_model = relax.transform.LegalizeOps()(tvm_model)
# Separate model from parameters.
tvm_model, params = relax.frontend.detach_params(tvm_model)
# Prepare inputs.
input_list = [
inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs
]
if params:
input_list += params["main"]
# Compile the relax graph into a VM then run.
#----------------------cpu-----------------------
with tvm.transform.PassContext(opt_level=0):
ex = relax.build(tvm_model, target="llvm")
vm = relax.VirtualMachine(ex, tvm.cpu())
# Run model and check outputs.
vm.set_input("main", *input_list)
vm.invoke_stateful("main")
tvm_cpu_output = vm.get_outputs("main")
print("cpu: ", tvm_cpu_output)
#----------------------cpu-----------------------
#----------------------cuda-----------------------
with tvm.target.Target("cuda"):
tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model)
with tvm.transform.PassContext(opt_level=3):
ex = tvm.compile(tvm_model, target="cuda")
vm1 = relax.VirtualMachine(ex, tvm.cuda())
vm1.set_input("main", *input_list)
vm1.invoke_stateful("main")
tvm_gpu_output = vm1.get_outputs("main")
print("gpu: ", tvm_gpu_output)
#----------------------cuda-----------------------
if __name__ == "__main__":
main()Triage
- needs-triage
Metadata
Metadata
Assignees
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug
