-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-10684] [SQL] StructType.interpretedOrdering need not to be serialized #8808
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Test build #1772 has finished for PR 8808 at commit
|
|
Thanks - I've merged this. |
|
@rxin, should this also go into 1.5.1.? |
|
Yes - I cherry-picked it now. Thanks. |
…ialized
Kryo fails with buffer overflow even with max value (2G).
{noformat}
org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: 1
Serialization trace:
containsChild (org.apache.spark.sql.catalyst.expressions.BoundReference)
child (org.apache.spark.sql.catalyst.expressions.SortOrder)
array (scala.collection.mutable.ArraySeq)
ordering (org.apache.spark.sql.catalyst.expressions.InterpretedOrdering)
interpretedOrdering (org.apache.spark.sql.types.StructType)
schema (org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema). To avoid this, increase spark.kryoserializer.buffer.max value.
at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:263)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:240)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
{noformat}
Author: navis.ryu <[email protected]>
Closes #8808 from navis/SPARK-10684.
(cherry picked from commit e3b5d6c)
Signed-off-by: Reynold Xin <[email protected]>
|
@navis can you give us the data type that caused this problem? |
|
@rxin It's just a table with 100+ string columns partitioned by a string key. It happened by a simple query just like |
|
Is this problem still exist in Spark 1.5.2 / 1.6.0? |
|
@uhonnavarkar, this patch was incorporated into 1.5.1 and 1.6.0, if that's what you're asking. |
|
I have 2 question below.
And this is how I am creating Spark Context: |
…ialized
Kryo fails with buffer overflow even with max value (2G).
{noformat}
org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: 1
Serialization trace:
containsChild (org.apache.spark.sql.catalyst.expressions.BoundReference)
child (org.apache.spark.sql.catalyst.expressions.SortOrder)
array (scala.collection.mutable.ArraySeq)
ordering (org.apache.spark.sql.catalyst.expressions.InterpretedOrdering)
interpretedOrdering (org.apache.spark.sql.types.StructType)
schema (org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema). To avoid this, increase spark.kryoserializer.buffer.max value.
at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:263)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:240)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
{noformat}
Author: navis.ryu <[email protected]>
Closes apache#8808 from navis/SPARK-10684.
(cherry picked from commit e3b5d6c)
Signed-off-by: Reynold Xin <[email protected]>
(cherry picked from commit 2c6a51e)
Kryo fails with buffer overflow even with max value (2G).
{noformat}
org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: 1
Serialization trace:
containsChild (org.apache.spark.sql.catalyst.expressions.BoundReference)
child (org.apache.spark.sql.catalyst.expressions.SortOrder)
array (scala.collection.mutable.ArraySeq)
ordering (org.apache.spark.sql.catalyst.expressions.InterpretedOrdering)
interpretedOrdering (org.apache.spark.sql.types.StructType)
schema (org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema). To avoid this, increase spark.kryoserializer.buffer.max value.
at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:263)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:240)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
{noformat}