Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ private object LabelConverter {
*/
@Experimental
class MultilayerPerceptronClassifier(override val uid: String)
extends Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassifierModel]
extends Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel]
with MultilayerPerceptronParams {

def this() = this(Identifiable.randomUID("mlpc"))
Expand All @@ -146,7 +146,7 @@ class MultilayerPerceptronClassifier(override val uid: String)
* @param dataset Training dataset
* @return Fitted model
*/
override protected def train(dataset: DataFrame): MultilayerPerceptronClassifierModel = {
override protected def train(dataset: DataFrame): MultilayerPerceptronClassificationModel = {
val myLayers = $(layers)
val labels = myLayers.last
val lpData = extractLabeledPoints(dataset)
Expand All @@ -156,25 +156,25 @@ class MultilayerPerceptronClassifier(override val uid: String)
FeedForwardTrainer.LBFGSOptimizer.setConvergenceTol($(tol)).setNumIterations($(maxIter))
FeedForwardTrainer.setStackSize($(blockSize))
val mlpModel = FeedForwardTrainer.train(data)
new MultilayerPerceptronClassifierModel(uid, myLayers, mlpModel.weights())
new MultilayerPerceptronClassificationModel(uid, myLayers, mlpModel.weights())
}
}

/**
* :: Experimental ::
* Classifier model based on the Multilayer Perceptron.
* Classification model based on the Multilayer Perceptron.
* Each layer has sigmoid activation function, output layer has softmax.
* @param uid uid
* @param layers array of layer sizes including input and output layers
* @param weights vector of initial weights for the model that consists of the weights of layers
* @return prediction model
*/
@Experimental
class MultilayerPerceptronClassifierModel private[ml] (
class MultilayerPerceptronClassificationModel private[ml] (
override val uid: String,
layers: Array[Int],
weights: Vector)
extends PredictionModel[Vector, MultilayerPerceptronClassifierModel]
extends PredictionModel[Vector, MultilayerPerceptronClassificationModel]
with Serializable {

private val mlpModel = FeedForwardTopology.multiLayerPerceptron(layers, true).getInstance(weights)
Expand All @@ -187,7 +187,7 @@ class MultilayerPerceptronClassifierModel private[ml] (
LabelConverter.decodeLabel(mlpModel.predict(features))
}

override def copy(extra: ParamMap): MultilayerPerceptronClassifierModel = {
copyValues(new MultilayerPerceptronClassifierModel(uid, layers, weights), extra)
override def copy(extra: ParamMap): MultilayerPerceptronClassificationModel = {
copyValues(new MultilayerPerceptronClassificationModel(uid, layers, weights), extra)
}
}