Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import scala.collection.mutable

import org.apache.spark.annotation.AlphaComponent
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.param.{IntParam, ParamMap}
import org.apache.spark.mllib.linalg._
import org.apache.spark.sql.types.DataType

/**
* :: AlphaComponent ::
* Perform feature expansion in a polynomial space. As said in wikipedia of Polynomial Expansion,
* which is available at [[http://en.wikipedia.org/wiki/Polynomial_expansion]], "In mathematics, an
* expansion of a product of sums expresses it as a sum of products by using the fact that
* multiplication distributes over addition". Take a 2-variable feature vector as an example:
* `(x, y)`, if we want to expand it with degree 2, then we get `(x, y, x * x, x * y, y * y)`.
*/
@AlphaComponent
class PolynomialExpansion extends UnaryTransformer[Vector, Vector, PolynomialExpansion] {

/**
* The polynomial degree to expand, which should be larger than 1.
* @group param
*/
val degree = new IntParam(this, "degree", "the polynomial degree to expand")
setDefault(degree -> 2)

/** @group getParam */
def getDegree: Int = getOrDefault(degree)

/** @group setParam */
def setDegree(value: Int): this.type = set(degree, value)

override protected def createTransformFunc(paramMap: ParamMap): Vector => Vector = { v =>
val d = paramMap(degree)
PolynomialExpansion.expand(v, d)
}

override protected def outputDataType: DataType = new VectorUDT()
}

/**
* The expansion is done via recursion. Given n features and degree d, the size after expansion is
* (n + d choose d) (including 1 and first-order values). For example, let f([a, b, c], 3) be the
* function that expands [a, b, c] to their monomials of degree 3. We have the following recursion:
*
* {{{
* f([a, b, c], 3) = f([a, b], 3) ++ f([a, b], 2) * c ++ f([a, b], 1) * c^2 ++ [c^3]
* }}}
*
* To handle sparsity, if c is zero, we can skip all monomials that contain it. We remember the
* current index and increment it properly for sparse input.
*/
object PolynomialExpansion {

private def choose(n: Int, k: Int): Int = {
Range(n, n - k, -1).product / Range(k, 1, -1).product
}

private def getPolySize(numFeatures: Int, degree: Int): Int = choose(numFeatures + degree, degree)

private def expandDense(
values: Array[Double],
lastIdx: Int,
degree: Int,
multiplier: Double,
polyValues: Array[Double],
curPolyIdx: Int): Int = {
if (multiplier == 0.0) {
// do nothing
} else if (degree == 0 || lastIdx < 0) {
polyValues(curPolyIdx) = multiplier
} else {
val v = values(lastIdx)
val lastIdx1 = lastIdx - 1
var alpha = multiplier
var i = 0
var curStart = curPolyIdx
while (i <= degree && alpha != 0.0) {
curStart = expandDense(values, lastIdx1, degree - i, alpha, polyValues, curStart)
i += 1
alpha *= v
}
}
curPolyIdx + getPolySize(lastIdx + 1, degree)
}

private def expandSparse(
indices: Array[Int],
values: Array[Double],
lastIdx: Int,
lastFeatureIdx: Int,
degree: Int,
multiplier: Double,
polyIndices: mutable.ArrayBuilder[Int],
polyValues: mutable.ArrayBuilder[Double],
curPolyIdx: Int): Int = {
if (multiplier == 0.0) {
// do nothing
} else if (degree == 0 || lastIdx < 0) {
polyIndices += curPolyIdx
polyValues += multiplier
} else {
// Skip all zeros at the tail.
val v = values(lastIdx)
val lastIdx1 = lastIdx - 1
val lastFeatureIdx1 = indices(lastIdx) - 1
var alpha = multiplier
var curStart = curPolyIdx
var i = 0
while (i <= degree && alpha != 0.0) {
curStart = expandSparse(indices, values, lastIdx1, lastFeatureIdx1, degree - i, alpha,
polyIndices, polyValues, curStart)
i += 1
alpha *= v
}
}
curPolyIdx + getPolySize(lastFeatureIdx + 1, degree)
}

private def expand(dv: DenseVector, degree: Int): DenseVector = {
val n = dv.size
val polySize = getPolySize(n, degree)
val polyValues = new Array[Double](polySize)
expandDense(dv.values, n - 1, degree, 1.0, polyValues, 0)
new DenseVector(polyValues)
}

private def expand(sv: SparseVector, degree: Int): SparseVector = {
val polySize = getPolySize(sv.size, degree)
val nnz = sv.values.length
val nnzPolySize = getPolySize(nnz, degree)
val polyIndices = mutable.ArrayBuilder.make[Int]
polyIndices.sizeHint(nnzPolySize)
val polyValues = mutable.ArrayBuilder.make[Double]
polyValues.sizeHint(nnzPolySize)
expandSparse(
sv.indices, sv.values, nnz - 1, sv.size - 1, degree, 1.0, polyIndices, polyValues, 0)
new SparseVector(polySize, polyIndices.result(), polyValues.result())
}

def expand(v: Vector, degree: Int): Vector = {
v match {
case dv: DenseVector => expand(dv, degree)
case sv: SparseVector => expand(sv, degree)
case _ => throw new IllegalArgumentException
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import org.scalatest.FunSuite

import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors}
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.mllib.util.TestingUtils._
import org.apache.spark.sql.{Row, SQLContext}
import org.scalatest.exceptions.TestFailedException

class PolynomialExpansionSuite extends FunSuite with MLlibTestSparkContext {

@transient var sqlContext: SQLContext = _

override def beforeAll(): Unit = {
super.beforeAll()
sqlContext = new SQLContext(sc)
}

test("Polynomial expansion with default parameter") {
val data = Array(
Vectors.sparse(3, Seq((0, -2.0), (1, 2.3))),
Vectors.dense(-2.0, 2.3),
Vectors.dense(0.0, 0.0, 0.0),
Vectors.dense(0.6, -1.1, -3.0),
Vectors.sparse(3, Seq())
)

val twoDegreeExpansion: Array[Vector] = Array(
Vectors.sparse(10, Array(0, 1, 2, 3, 4, 5), Array(1.0, -2.0, 4.0, 2.3, -4.6, 5.29)),
Vectors.dense(1.0, -2.0, 4.0, 2.3, -4.6, 5.29),
Vectors.dense(Array(1.0) ++ Array.fill[Double](9)(0.0)),
Vectors.dense(1.0, 0.6, 0.36, -1.1, -0.66, 1.21, -3.0, -1.8, 3.3, 9.0),
Vectors.sparse(10, Array(0), Array(1.0)))

val df = sqlContext.createDataFrame(data.zip(twoDegreeExpansion)).toDF("features", "expected")

val polynomialExpansion = new PolynomialExpansion()
.setInputCol("features")
.setOutputCol("polyFeatures")

polynomialExpansion.transform(df).select("polyFeatures", "expected").collect().foreach {
case Row(expanded: DenseVector, expected: DenseVector) =>
assert(expanded ~== expected absTol 1e-1)
case Row(expanded: SparseVector, expected: SparseVector) =>
assert(expanded ~== expected absTol 1e-1)
case _ =>
throw new TestFailedException("Unmatched data types after polynomial expansion", 0)
}
}

test("Polynomial expansion with setter") {
val data = Array(
Vectors.sparse(3, Seq((0, -2.0), (1, 2.3))),
Vectors.dense(-2.0, 2.3),
Vectors.dense(0.0, 0.0, 0.0),
Vectors.dense(0.6, -1.1, -3.0),
Vectors.sparse(3, Seq())
)

val threeDegreeExpansion: Array[Vector] = Array(
Vectors.sparse(20, Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
Array(1.0, -2.0, 4.0, -8.0, 2.3, -4.6, 9.2, 5.29, -10.58, 12.17)),
Vectors.dense(1.0, -2.0, 4.0, -8.0, 2.3, -4.6, 9.2, 5.29, -10.58, 12.17),
Vectors.dense(Array(1.0) ++ Array.fill[Double](19)(0.0)),
Vectors.dense(1.0, 0.6, 0.36, 0.216, -1.1, -0.66, -0.396, 1.21, 0.726, -1.331, -3.0, -1.8,
-1.08, 3.3, 1.98, -3.63, 9.0, 5.4, -9.9, -27.0),
Vectors.sparse(20, Array(0), Array(1.0)))

val df = sqlContext.createDataFrame(data.zip(threeDegreeExpansion)).toDF("features", "expected")

val polynomialExpansion = new PolynomialExpansion()
.setInputCol("features")
.setOutputCol("polyFeatures")
.setDegree(3)

polynomialExpansion.transform(df).select("polyFeatures", "expected").collect().foreach {
case Row(expanded: DenseVector, expected: DenseVector) =>
assert(expanded ~== expected absTol 1e-1)
case Row(expanded: SparseVector, expected: SparseVector) =>
assert(expanded ~== expected absTol 1e-1)
case _ =>
throw new TestFailedException("Unmatched data types after polynomial expansion", 0)
}
}
}