Skip to content
Closed
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions dev/sparktestsupport/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -627,6 +627,7 @@ def __hash__(self):
"pyspark.ml.tuning",
# unittests
"pyspark.ml.tests.test_algorithms",
"pyspark.ml.tests.test_als",
"pyspark.ml.tests.test_base",
"pyspark.ml.tests.test_evaluation",
"pyspark.ml.tests.test_feature",
Expand Down
21 changes: 15 additions & 6 deletions mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala
Original file line number Diff line number Diff line change
Expand Up @@ -324,13 +324,22 @@ class ALSModel private[ml] (
// create a new column named map(predictionCol) by running the predict UDF.
val validatedUsers = checkIntegers(dataset, $(userCol))
val validatedItems = checkIntegers(dataset, $(itemCol))

val validatedInputAlias = Identifiable.randomUID("__als_validated_input")
val itemFactorsAlias = Identifiable.randomUID("__als_item_factors")
val userFactorsAlias = Identifiable.randomUID("__als_user_factors")

val predictions = dataset
.join(userFactors,
validatedUsers === userFactors("id"), "left")
.join(itemFactors,
validatedItems === itemFactors("id"), "left")
.select(dataset("*"),
predict(userFactors("features"), itemFactors("features")).as($(predictionCol)))
.withColumns(Map($(userCol) -> validatedUsers, $(itemCol) -> validatedItems))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shall we use the Seq version of withColumns? So that the column order is deterministic.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why do we need a withColumns now?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It maybe not needed, I want to use withColumns to validate the columns first (while keep the column name) and then reference the validated column by s"${validatedInputAlias}.${$(itemCol)}"

.alias(validatedInputAlias)
.join(userFactors.alias(userFactorsAlias),
col(s"${validatedInputAlias}.${$(userCol)}") === col(s"${userFactorsAlias}.id"), "left")
.join(itemFactors.alias(itemFactorsAlias),
col(s"${validatedInputAlias}.${$(itemCol)}") === col(s"${itemFactorsAlias}.id"), "left")
.select(col(s"${validatedInputAlias}.*"),
predict(col(s"${userFactorsAlias}.features"), col(s"${itemFactorsAlias}.features"))
.alias($(predictionCol)))

getColdStartStrategy match {
case ALSModel.Drop =>
predictions.na.drop("all", Seq($(predictionCol)))
Expand Down
67 changes: 67 additions & 0 deletions python/pyspark/ml/tests/test_als.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import tempfile
import unittest

import pyspark.sql.functions as sf
from pyspark.ml.recommendation import ALS, ALSModel
from pyspark.testing.sqlutils import ReusedSQLTestCase


class ALSTest(ReusedSQLTestCase):
def test_ambiguous_column(self):
data = self.spark.createDataFrame(
[[1, 15, 1], [1, 2, 2], [2, 3, 4], [2, 2, 5]], ["user", "item", "rating"]
)
model = ALS(
userCol="user",
itemCol="item",
ratingCol="rating",
numUserBlocks=10,
numItemBlocks=10,
maxIter=1,
seed=42,
).fit(data)

with tempfile.TemporaryDirectory() as d:
model.write().overwrite().save(d)
loaded_model = ALSModel().load(d)

with self.sql_conf({"spark.sql.analyzer.failAmbiguousSelfJoin": False}):
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

before this PR, fails with [MISSING_ATTRIBUTES.RESOLVED_ATTRIBUTE_APPEAR_IN_OPERATION]

users = loaded_model.userFactors.select(sf.col("id").alias("user"))
items = loaded_model.itemFactors.select(sf.col("id").alias("item"))
predictions = loaded_model.transform(users.crossJoin(items))
self.assertTrue(predictions.count() > 0)

with self.sql_conf({"spark.sql.analyzer.failAmbiguousSelfJoin": True}):
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

before this PR, fails with org.apache.spark.sql.AnalysisException: Column features#50, features#46 are ambiguous

users = loaded_model.userFactors.select(sf.col("id").alias("user"))
items = loaded_model.itemFactors.select(sf.col("id").alias("item"))
predictions = loaded_model.transform(users.crossJoin(items))
self.assertTrue(predictions.count() > 0)


if __name__ == "__main__":
from pyspark.ml.tests.test_als import * # noqa: F401

try:
import xmlrunner

testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)